数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)
前提知识
1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)点我
2,二次探测定理:x2≡1(mod p)⇒x=1∣∣p−1x^{2}\equiv 1(mod\ p)\Rightarrow x=1||p-1x2≡1(mod p)⇒x=1∣∣p−1点我
但我们注意到,费马定理其逆定理不能直接用来判断素数,必须要枚举很多数,一般情况下我们可以枚举到1000左右,就可以把long long范围内的大部分数给判断完成。
也有例外,即存在一种极端反例卡迈克尔数(一种合数),对于任何卡迈克尔叔,费马定理都成立。虽然这种极少,在1e8范围内的整数中,只有255个卡迈克尔数。但不管怎么说还是会被出题人卡死,或者被人hack,虽然这种算法的出错率为4^-k(k为测试数据的个数)。
而为了防止这种情况出现,有一种东西,叫二次探测定理:
如果p是奇素数,则 x≡1(mod p)的解为x=1或x=p-1(mod p),这个由模运算的性质易得。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
const int times = 10;
ll fast_mod(ll a,ll b,ll mod)//计算2^q的过程
{
ll res = 0;
while(b){
if(b & 1) res = res + a;
a <<= 1;
if(a >= mod) a -= mod;
if(res >= mod) res -= mod;
b >>= 1;
}
return res;
}
ll fast_pow_mod(ll a,ll b,ll mod)//快速幂算出a^m
{
ll res = 1;
while(b){
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
}
bool check(ll a,ll m,ll p,ll n)//对于每次随机的a进行测试
{
ll temp = fast_pow_mod(a,m,n),ret = temp;
for(int i = 0;i < p;++i){
ret = fast_mod(temp,temp,n);
if(ret == 1 && temp != n - 1 && temp != 1) return true;
temp = ret;
}
return ret != 1;
}
bool Miller_Pabin(ll n)//Miller测试的主体结构
{
if(n < 2) return false;
if(n == 2) return true;
if(n & 1 == 0) return false;//对于偶数的优化
ll p = 0,x = n - 1;//p为Miller测试的q,x为Miller测试的m
while(x & 1 == 0){
x >>= 1;
p++;
}
srand(time(NULL));
for(int i = 0;i < times;++i){
ll o = rand() % (n - 1) + 1;//o就是Miller测试的底数a
if(check(o,x,p,n)) return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t--){
long long n;
cin >> n;
cout << (Miller_Pabin(n) ? "Prime" : "Not a Prime") << endl;
}
return 0;
}
数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)的更多相关文章
- 数学--数论--Miller_Rabin判断素数
ACM常用模板合集 #include<iostream> #include<algorithm> #include<cstring> #include<cst ...
- zoj 月赛B题(快速判断一个大数是否为素数)
给出一个64位的大数,如何快速判断其是否为素数 #include<algorithm> #include<cstdio> #include<cstring> #in ...
- 『转载』判断一个正整数是不是素数,时间复杂度为O(根号n)
原文链接:https://blog.csdn.net/liangdagongjue/article/details/77895170#commentsedit PS:新手上路,实在找不到怎么转载,所以 ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- JAVA 写一个方法,判断一个整数是否为素数
1 import java.util.Scanner; 2 3 public class Question3 { 4 public static void main(String[] args) { ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- C++判断一个数字是否为质数
关于素数的算法是程序竞赛比较重要的数论知识,我们来看通常会使用的几个算法. 我们先来复习几个基本概念: 质数:对于大于1的自然数,若除了1和它本身,没有别的因数,则称这个数为质数,质数也叫素数.反之, ...
- P2626 斐波那契数列(升级版)(合数的质数分解, 大数为素数的概率十分小的利用)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1)=1f(1) = 1 f(1)=1 f(2)=1f(2) = 1f(2)=1 f(n)=f(n−1)+f(n−2)f(n) = f ...
- 很火的Java题——判断一个整数是否是奇数
完成以下代码,判断一个整数是否是奇数: public boolean isOdd(int i) 看过<编程珠玑>的人都知道这道题的答案和其中极为简单的道理. 最普遍的风格,如下: 这个函数 ...
随机推荐
- MongoDB查询mgov2的聚合方法
1.多条表数据累计相加. respCount := struct { Rebatescore int64 //变量命名必须要和查询的参数一样.}{} o := bson.M{"$match& ...
- 自己实现一个 DFA 串模式识别器
自己实现一个 DFA 串模式识别器 前言 这是我编译原理课程的实验.希望读完这篇文章的人即便不知道 NFA,DFA 和正规表达式是什么,也能够对它们有一个简单的理解,并能自己去实现一个能够识别特定模式 ...
- AJ学IOS 之微博项目实战(4)微博自定义tabBar中间的添加按钮
AJ分享,必须精品 一:效果图 自定义tabBar实现最下面中间的添加按钮 二:思路 首先在自己的tabBarController中把系统的tabBar设置成自己的tabBar(NYTabBar),这 ...
- Linux下安装Redis4.0版本(简便方法)
Redis介绍: Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...
- F - Dragon Balls
Five hundred years later, the number of dragon balls will increase unexpectedly, so it's too difficu ...
- Jar包一键重启的Shell脚本及新服务器部署的一些经验
原文首发于博客园,作者:后青春期的Keats:地址:https://www.cnblogs.com/keatsCoder/ 转载请注明,谢谢! 前言 最近公司为客户重新部署了一套新环境,由我来完成了基 ...
- api测试用例(编写思路)
在API的自动化测试维度中,测试维度分为两个维度,一个是单独的对API的验证,客户端发送一个请求后,服务端得到客户端的请求并且响应回复给客户端: 另外一个维度是基于业务场景的测试,基于业务场景的也就是 ...
- 详解 final 和 static
在我们上一篇博文中提到了 fianl 这个关键字,对于这个关键字,本人在初学时也耗费了极大地心血,甚至和师兄进行了激烈的讨论,并且,在我们讨论.尝试 以及 翻阅各种资料,最终得出了合适.易懂的解释. ...
- [转+自]SSH工作原理
SSH工作原理 熟悉Linux的人肯定都知道SSH.SSH是一种用于安全访问远程服务器的网络协议.它将客户端与服务端之间的消息通过加密保护起来,这样就无法被窃取或篡改了.那么它安全性是如何实现的呢? ...
- Neo4J 查找两节点之间的路径
# 两节点之间的所有路径MATCH p=(a)-[*]->(b)RETURN p # a->b 直接连接MATCH p=(a)-[]->(b)RETURN p # a-...> ...