caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面

有一些参数需要计算的,也不是乱设置。

假设我们有50000个训练样本,batch_size为64,即每批次处理64个样本,那么需要迭代50000/64=782次才处理完一次全部的样本。我们把处理完一次所有的样本,称之为一代,即epoch。所以,这里的test_interval设置为782,即处理完一次所有的训练数据后,才去进行测试。如果我们想训练100代,则需要设置max_iter为78200.

同理,如果有10000个测试样本,batch_size设为32,那么需要迭代10000/32=313次才完整地测试完一次,所以设置test_iter为313.

学习率变化规律我们设置为随着迭代次数的增加,慢慢变低。总共迭代78200次,我们将变化lr_rate三次,所以stepsize设置为78200/3=26067,即每迭代26067次,我们就降低一次学习率。

下面是生成solver文件的python代码,比较简单:

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 17 18:20:57 2016 @author: root
"""
path='/home/xxx/data/'
solver_file=path+'solver.prototxt' #solver文件保存位置 sp={}
sp['train_net']=‘“’+path+'train.prototxt”' # 训练配置文件
sp['test_net']=‘“’+path+'val.prototxt”' # 测试配置文件
sp['test_iter']='313' # 测试迭代次数
sp['test_interval']='782' # 测试间隔
sp['base_lr']='0.001' # 基础学习率
sp['display']='782' # 屏幕日志显示间隔
sp['max_iter']='78200' # 最大迭代次数
sp['lr_policy']='“step”' # 学习率变化规律
sp['gamma']='0.1' # 学习率变化指数
sp['momentum']='0.9' # 动量
sp['weight_decay']='0.0005' # 权值衰减
sp['stepsize']='26067' # 学习率变化频率
sp['snapshot']='7820' # 保存model间隔
sp['snapshot_prefix']=‘"snapshot"’ # 保存的model前缀
sp['solver_mode']='GPU' # 是否使用gpu
sp['solver_type']='SGD' # 优化算法 def write_solver():
#写入文件
with open(solver_file, 'w') as f:
for key, value in sorted(sp.items()):
if not(type(value) is str):
raise TypeError('All solver parameters must be strings')
f.write('%s: %s\n' % (key, value))
if __name__ == '__main__':
write_solver()

执行上面的文件,我们就会得到一个solver.prototxt文件,有了这个文件,我们下一步就可以进行训练了。

caffe的python接口学习(2)生成solver文件的更多相关文章

  1. caffe的python接口学习(2):生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 ...

  2. caffe的python接口学习(1):生成配置文件

    caffe是C++语言写的,可能很多人不太熟悉,因此想用更简单的脚本语言来实现.caffe提供matlab接口和python接口,这两种语言就非常简单,而且非常容易进行可视化,使得学习更加快速,理解更 ...

  3. caffe的python接口学习(4)mnist实例手写数字识别

    以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧 一 数据准备 准备训练集和测试集图片的列表清单; 二 导入caffe库,设定文件路径 # -*- coding: utf-8 -*- im ...

  4. caffe的python接口学习(5):生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

  5. caffe的python接口学习(5)生成deploy文件

    如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也.deploy文件没有第一层数据输入层, ...

  6. caffe的python接口学习(7):绘制loss和accuracy曲线

    使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...

  7. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  8. caffe的python接口学习(1)生成配置文件

    ---恢复内容开始--- 看了denny的博客,写下自己觉得简短有用的部分 想用caffe训练数据首先要学会编写配置文件: (即便是用别人训练好的模型也要进行微调的,所以此关不可跨越) 代码就不粘贴了 ...

  9. caffe的python接口学习(6)用训练好的模型caffemodel分类新图片

    经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测. 我们从mnist数据集的t ...

随机推荐

  1. jchdl - RTL实例 - And2And(结构体嵌套的使用)

    https://mp.weixin.qq.com/s/PQIPkDymvcGc_re8ux50vA   结构体可以嵌套使用.   参考链接 https://github.com/wjcdx/jchdl ...

  2. 【Storm】安装教程

    1.下载tar.gz包 2.上传解压,tar -zxvf 包 -C 路径 3.修改conf/storm.yaml storm.zookeeper.servers: - "bigboss1&q ...

  3. (三)用less+gulp+requireJs 搭建项目(requireJs)

    首先我想说下我在写js时经常遇到的问题,尤其是很大的项目: 1.我一般会把各个功能分块写在各个js文件中: 比如弹出框: dialog.js $(document).ready(function(){ ...

  4. Java蓝桥杯 算法提高 九宫格

    算法提高 9-1九宫格 时间限制:1.0s 内存限制:256.0MB 提交此题 问题描述 九宫格.输入1-9这9个数字的一种任意排序,构成3*3二维数组.如果每行.每列以及对角线之和都相等,打印1.否 ...

  5. Java实现 LeetCode 459 重复的子字符串

    459. 重复的子字符串 给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成.给定的字符串只含有小写英文字母,并且长度不超过10000. 示例 1: 输入: "abab" ...

  6. Java实现 LeetCode 227 基本计算器 II(二)

    227. 基本计算器 II 实现一个基本的计算器来计算一个简单的字符串表达式的值. 字符串表达式仅包含非负整数,+, - ,*,/ 四种运算符和空格 . 整数除法仅保留整数部分. 示例 1: 输入: ...

  7. Java实现字符串编辑距离

    1 问题描述 给定一个源串和目标串,能够进行如下操作: 在任意位置上插入一个字符: 替换掉任意字符: 删除任意字符. 写一个程序,实现返回最小操作次数,使得对源串进行上述这些操作后等于目标串. 2 解 ...

  8. JPA入门及深入

    一:ORM介绍 ORM(Object-Relational Mapping) 表示对象关系映射.在面向对象的软件开发中,通过ORM,就可以把对象映射到关系型数据库中.只要有一套程序能够做到建立对象与数 ...

  9. 关于C#委托三种调用的分享

    一.同步调用 1.同步调用会按照代码顺序来执行2.同步调用会阻塞线程,如果是要调用一项繁重的工作(如大量IO操作),可能会让程序停顿很长时间,造成糟糕的用户体验,这时候异步调用就很有必要了. 举个栗子 ...

  10. (十)DVWA之SQL Injection--测试分析(Impossible)

    DVWA之SQL Injection--测试分析(Impossible) 防御级别为Impossible的后端代码:impossible.php <?php if( isset( $_GET[ ...