题目

Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2,0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 =

5.0.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

Output Specification:

For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

Sample Input:

4

0.1 0.2 0.3 0.4

Sample Output:

5.00

题目分析

给定⼀个正数数列,从中截取任意连续的⼏个数,称为⽚段。例如,给定数列{0.1, 0.2, 0.3, 0.4},可截取有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3)(0.3, 0.4) (0.4) 这10个⽚段。给定正整数数列,求出全部⽚段包含的所有的数之和。如本例中10个⽚段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0,在⼀⾏中输出该序列所有⽚段包含的数之和,精确到⼩数点后2位

解题思路

  1. 找到每个数字在所有序列中出现次数的规律:如果当前是第i个数,则总出现次数等于i*(n+1-i)
  2. 计算总和时,只需遍历i,总和+=当前数字i(n+1-i)

易错点

  1. doubleintint和intintdouble,

    t+=i*(n+1-i)*m;//int*int*double 本题中n取值最大为10^5,所以int*int之后还是int可能越界,测试点2,3错误

    t+=m*(n+1-i)*i;//double*int*int 本题中n取值最大为10^5,但是double*int之后,结果隐式转换为double继续乘int,不会越界

Code

Code 01

#include <iostream>
using namespace std;
int main() {
int n;
cin >> n;
double sum = 0.0, temp;
for (int i = 1; i <= n; i++) {
cin >> temp;
sum = sum + temp * i * (n - i + 1);
}
printf("%.2f", sum);
return 0;
}

Code 01

#include <iostream>
using namespace std;
int main(int argc,char * argv[]) {
long long n;
scanf("%d",&n);
double m, t=0.0;
for(long long i=1; i<=n; i++) {
scanf("%lf",&m);
t+=i*(n+1-i)*m; //如果i定义为int这样写,测试点2,3不通过,因为n最大取值为10^5,int*int越界
//t+=m*i*(n+1-i);
}
printf("%.2f",t);
return 0;
}

PAT Advanced A1104 Sum of Number Segments (20) [数学问题]的更多相关文章

  1. PAT甲级——A1104 Sum of Number Segments【20】

    Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ ...

  2. PAT甲级——A1104 Sum of Number Segments

    Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For exam ...

  3. PAT 甲级 1104. Sum of Number Segments (20) 【数学】

    题目链接 https://www.patest.cn/contests/pat-a-practise/1104 思路 最容易想到的一个思路就是 遍历一下所有组合 加一遍 但 时间复杂度 太大 会超时 ...

  4. PAT 甲级 1104 sum of Number Segments

    1104. Sum of Number Segments (20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CAO, Pen ...

  5. PAT甲级——1104 Sum of Number Segments (数学规律、自动转型)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90486252 1104 Sum of Number Segmen ...

  6. PAT A1104 Sum of Number Segments (20 分)——数学规律,long long

    Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For exam ...

  7. PAT (Advanced Level) 1104. Sum of Number Segments (20)

    简单题. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #in ...

  8. PAT甲题题解-1104. Sum of Number Segments (20)-(水题)

    #include <iostream> #include <cstdio> #include <algorithm> #include <string.h&g ...

  9. 【PAT甲级】1104 Sum of Number Segments (20 分)

    题意:输入一个正整数N(<=1e5),接着输入N个小于等于1.0的正数,输出N个数中所有序列的和. AAAAAccepted code: #define HAVE_STRUCT_TIMESPEC ...

随机推荐

  1. 十、JavaScript之文本相加

    一.代码如下 二.执行效果如下 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" cont ...

  2. 五十、在SAP程序中应用其他单元,INCLUDE的用法

    一.在SAP程序中写入以下代码 二.双击引用的单元,会弹出以下窗口 三.点击是 四.点击保存 五.保存在本地 六.此文件被包含进来 七.我们把在GET_DATA和SHOW_DATA写到INCLUDE里 ...

  3. 088-PHP数组运用 - 通过循环函数过滤部分数组

    <?php function myfunc(&$arr){ //自定义一个过滤函数 $j=count($arr); for($i=0;$i<$j;$i++){ if($arr[$i ...

  4. Swift 结构体struct

    //结构体是一个值类型 struct location{ //属性 var x:Double var y:Double //方法 func test() { print("结构体中的test ...

  5. Flutter如何引用第三方库并使用

    Flutter如何引用第三方库并使用 https://www.jianshu.com/p/bbda7794345e Flutter官网点击访问Flutter教程(一)Flutter概览Flutter教 ...

  6. POJ 1330 LCA最近公共祖先 离线tarjan算法

    题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集 ...

  7. Delphi MD5

    unit uMD5; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics; type MD5Count = ...

  8. (21)Laplance

    这个算法还是用来进行边缘检测的 =============================== #include <opencv2/opencv.hpp> #include <ios ...

  9. PHP笔记03

    PHP表单 获取表单数据 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  10. 第七篇:Python3连接MySQL

    第七篇:Python3连接MySQL 连接数据库 注意事项 在进行本文以下内容之前需要注意: 你有一个MySQL数据库,并且已经启动. 你有可以连接该数据库的用户名和密码 你有一个有权限操作的data ...