【leetcode】Binary Tree Maximum Path Sum (medium)
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
找树的最大路径和 注意路径可以从任意点起始和结束。
我发现我真的还挺擅长树的题目的,递归不难。就是因为有个需要比较的量(最大和),所以需要再写一个函数。
因为路径可以从任意点起始和结束,所以每次递归的时候左右子树小于等于0的就可以不管了。
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std; //Definition for binary tree
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
int maxPathSum(TreeNode *root){
if(root == NULL)
{
return ;
}
int MaxPathSum = root->val; //赋的初值一定要小于等于最后的值
maxPathSumCur(root, MaxPathSum);
return MaxPathSum;
}
int maxPathSumCur(TreeNode *root, int& MaxPathSum) {
if(root == NULL)
{
return ;
} int lsum = maxPathSumCur(root->left, MaxPathSum);
int rsum = maxPathSumCur(root->right, MaxPathSum);
int maxPathSumCurrent = root->val; //每次根的值一定要加上 左右子树的就加大于0的
if(lsum > )
{
maxPathSumCurrent += lsum;
}
if(rsum > )
{
maxPathSumCurrent += rsum;
} MaxPathSum = max(maxPathSumCurrent, MaxPathSum);
return max(root->val, max(root->val + lsum, root->val +rsum)); //返回时返回根 节点加左 或右子树 或单独根节点中最大的
}
void create(TreeNode *& root)
{
int d;
scanf("%d", &d);
if(d != )
{
root = new TreeNode(d);
create(root->left);
create(root->right);
}
}
}; int main()
{
Solution s;
TreeNode * T = NULL;
s.create(T);
int sum = s.maxPathSum(T); return ;
}
【leetcode】Binary Tree Maximum Path Sum (medium)的更多相关文章
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- leetcode 124. Binary Tree Maximum Path Sum 、543. Diameter of Binary Tree(直径)
124. Binary Tree Maximum Path Sum https://www.cnblogs.com/grandyang/p/4280120.html 如果你要计算加上当前节点的最大pa ...
- 第四周 Leetcode 124. Binary Tree Maximum Path Sum (HARD)
124. Binary Tree Maximum Path Sum 题意:给定一个二叉树,每个节点有一个权值,寻找任意一个路径,使得权值和最大,只需返回权值和. 思路:对于每一个节点 首先考虑以这个节 ...
- 【LeetCode OJ】Binary Tree Maximum Path Sum
Problem Link: http://oj.leetcode.com/problems/binary-tree-maximum-path-sum/ For any path P in a bina ...
- leetcode@ [124] Binary Tree Maximum Path Sum (DFS)
https://leetcode.com/problems/binary-tree-maximum-path-sum/ Given a binary tree, find the maximum pa ...
- [leetcode]124. Binary Tree Maximum Path Sum二叉树最大路径和
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...
- LeetCode 124. Binary Tree Maximum Path Sum 二叉树中的最大路径和 (C++/Java)
题目: Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
随机推荐
- nyoj 4 779 兰州烧饼
兰州烧饼 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 烧饼有两面,要做好一个兰州烧饼,要两面都弄热.当然,一次只能弄一个的话,效率就太低了.有这么一个大平底锅,一 ...
- WPF:类型转换器的实现
类型转换器提供字符串文本到值的转换方法来帮助WPF设计时在XAML中配置属性.具体用法可以参考MSDN的文档:如何:实现类型转换器. 下面是一个Demo,参考自<葵花宝典--WPF自学手册> ...
- 【转】WordPress转PHPCMS策略-数据库完美转换
来源:http://www.sjyhome.com/php/wp-to-pc-sql.html WordPress的访问速度不可恭维?那就试试能够生成纯静态的PHPCMS,保证能够让你的网页访问速度有 ...
- leetcode 82. Remove Duplicates from Sorted List II
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numb ...
- Opencv二值图像的分布直方图
Mat img; ]; int main() { VideoCapture video(); if (!video.isOpened()) { ; } Mat img; Mat img1, img2, ...
- OSI参考模型与TCP/IP协议模型
OSI和TCP/IP都是为了计算机之间更好的互联的. 计算机网络是一个复杂的系统,比如两台计算机进行通信不仅仅只是有一条通信线就可以了. 还有很多的工作需要完成,例如: 如何知道对方计算机是否做好准备 ...
- 数据结构大二课程设计:QT实现线段树
源码以及编译文件下载地址:http://download.csdn.net/detail/zhiyanpianyu1234/9445909#comment 加入了一些小东西,一直觉得课设是做给自己看的 ...
- python中单元测试/数据库预处理的技巧
假设文件结构: pkg/ __init__.py components/ core.py __init__.py tests/ core_test.py __init__.py python -m 你 ...
- php返回json数组
1.后端 //处理json数组中文问题 function arrayRecursive(&$array, $function, $apply_to_keys_also = false) { s ...
- http statusCode(状态码)
转自:1) http://specs.openstack.org/openstack/keystone-specs/api/v3/identity-api-v3.html#unauthorized ...