Description

有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作:
1. 选择一行, 该行每个格子的权值加1或减1。
2. 选择一列, 该列每个格子的权值加1或减1。
现在有K个限制,每个限制为一个三元组(x,y,c),代表格子(x,y)权值等于c。问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在输出”Yes”,否则输出”No”。

Input

先输入一个T(T <= 5)代表输入有T组数据,每组数据格式为:
第一行三个整数n, m, k (1 <= n, m,k <= 1000)。
接下来k行,每行三个整数x, y, c。

Output

对于每组数据,输出Yes或者No。

Sample Input

2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 2
2 2 4
1 1 0
1 2 0
2 1 2
2 2 1

Sample Output

Yes
No
 
丝帛题,设对于第i行我们共进行了Ai次+1操作,对于第j列我们共进行了Bj次+1操作,那么每个格点的值就变成了Ai+Bj。
问题转化成判定若干个类同Ai+Bj=x的方程是否有解,用类似二分图染色的方法dfs一下就行了。
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
const int BufferSize=1<<16;
char buffer[BufferSize],*head,*tail;
inline char Getchar() {
if(head==tail) {
int l=fread(buffer,1,BufferSize,stdin);
tail=(head=buffer)+l;
}
return *head++;
}
inline int read() {
int x=0,f=1;char c=Getchar();
for(;!isdigit(c);c=Getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=Getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=2010;
int n,m,vis[maxn],val[maxn],first[maxn],next[maxn<<1],to[maxn<<1],dis[maxn<<1],e;
void AddEdge(int u,int v,int w) {
to[++e]=v;dis[e]=w;next[e]=first[u];first[u]=e;
to[++e]=u;dis[e]=w;next[e]=first[v];first[v]=e;
}
int dfs(int x) {
vis[x]=1;
ren {
if(vis[to[i]]&&val[to[i]]+val[x]!=dis[i]) return 0;
else if(!vis[to[i]]) {
val[to[i]]=dis[i]-val[x];
if(!dfs(to[i])) return 0;
}
}
return 1;
}
void solve() {
n=read();m=read();e=0;
rep(i,1,n+m) vis[i]=first[i]=0;
dwn(i,read(),1) {
int x=read(),y=read(),v=read();
AddEdge(x,y+n,v);
}
rep(i,1,n+m) if(!vis[i]&&!dfs(i)) {
puts("No");return;
}
puts("Yes");
}
int main() {
dwn(T,read(),1) solve();
return 0;
}

  

BZOJ4500: 矩阵的更多相关文章

  1. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  2. 【BZOJ4500】矩阵(差分约束)

    [BZOJ4500]矩阵(差分约束) 题面 BZOJ 然而权限题 题解 显然拆分行和列.不妨设这一行/列总共加减的值是\(p\),那么每一个限制就是两个数的和为一个特定的数.这样子不好做,反正是一个二 ...

  3. 【bzoj4500】矩阵 带权并查集

    题目描述 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 1. 选择一行, 该行每个格子的权值加1或减1. 2. 选择一列, 该列每个格子的权值加1或减1. 现在有K个限制,每 ...

  4. C语言 · 矩阵乘法 · 算法训练

    问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...

  5. 获取Canvas当前坐标系矩阵

    前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...

  6. CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换

    CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...

  7. “为什么DirectX里表示三维坐标要建一个4*4的矩阵?”

    0x00 前言 首先要说明的是,本文的标题事实上来自于知乎上的一个同名问题:为什么directX里表示三维坐标要建一个4*4的矩阵? - 编程 .因此,正如Milo Yip大神所说的这个标题事实上是存 ...

  8. js实现蛇形矩阵

    参加腾讯前端实习生笔试,真的是被虐了千百遍,除了一条js程序题,其他半点前端都没有,都是考算法,计算机原理,数据结构.下面贴上腾讯笔试最后三大条中的一条,实现一个蛇形矩阵的输出.蛇形矩阵的什么样这里我 ...

  9. ACM 中 矩阵数据的预处理 && 求子矩阵元素和问题

            我们考虑一个$N\times M$的矩阵数据,若要对矩阵中的部分数据进行读取,比如求某个$a\times b$的子矩阵的元素和,通常我们可以想到$O(ab)$的遍历那个子矩阵,对它的各 ...

随机推荐

  1. 【131031】<meta http-equiv=...> 的功能

    1.定义语言 格式: 〈meta http-equiv=″Content-Type″ content=″text/html; charset=gb2312″〉 这是META最常见的用法,在制作网页时, ...

  2. POJ3694 Network(Tarjan双联通分图 LCA 桥)

    链接:http://poj.org/problem?id=3694 题意:给定一个有向连通图,每次增加一条边,求剩下的桥的数量. 思路: 给定一个无向连通图,添加一条u->v的边,求此边对图剩余 ...

  3. git中使用.gitignore文件

    在进行协作开发代码管理的过程中,常常会遇到某些临时文件.配置文件.或者生成文件等,这些文件由于不同的开发端会不一样,如果使用git add . 将所有文件纳入git库中,那么会出现频繁的改动和push ...

  4. 使用nbrbutil工具來處理requested media id is in use, cannot process request

    首先我發現一個Media已經過期很久,但是并不會覆蓋重用 使用bpexpdate手動過期,失敗,讓他deassigned也不行 使用bpimmedia查看上面的image也沒有 我嘗試手動去過期,返回 ...

  5. 7-13IN和NOT IN 子查询

    IN后面的子查询可以返回多条记录. SELECT ...FROM  WHERE 查询表达式 IN(子查询) 常用IN替换等于(=)的比较子查询. 用法: (1)使用 :IN关键字可以使父查询匹配子查询 ...

  6. 利用IdentityServer3在ASP.NET 5和Angular中实现OAuth2 Implicit Flow

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:之前介绍过的IdentityServer3虽然是基于Katana开发的,不过同样可以托 ...

  7. java 存储对象

    一.存储区域: 1)寄存器.这是最快的存储区,因为它位于不同于其他存储区的地方——处理器内部.但是寄存器的数量极其有限,所以寄存器根据需求进行分配.你不能直接控制,也不能在程序中感觉到寄存器存在的任何 ...

  8. RAC的QA

    RAC: Frequently Asked Questions [ID 220970.1]   修改时间 13-JAN-2011     类型 FAQ     状态 PUBLISHED   Appli ...

  9. 第二十五篇:在SOUI中做事件分发处理

    不同的SOUI控件可以产生不同的事件.SOUI系统中提供了两种事件处理方式:事件订阅 + 事件处理映射表(参见第八篇:SOUI中控件事件的响应) 事件订阅由于直接将事件及事件处理函数连接,不存在事件分 ...

  10. Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*

    D. Iahub and Xors   Iahub does not like background stories, so he'll tell you exactly what this prob ...