1346. Intervals of Monotonicity

Time limit: 1.0 second
Memory limit: 64 MB
It’s well known that a domain of any continuous function may be divided into intervals where the function would increase monotonically or decrease monotonically. A number of intervals of such a partition we will call a complexity of the partition. A complexity of a continuous function is the minimal possible complexity of partition in the domain into the monotonicity intervals.
The notion of complexity may be defined not only for continuous functions. In particular, it is applicable to the functions specified on a grid.

Input

The input contains a description of a function F, specified on a grid. The first line contains two numbers A and B — the first and the last point of the integer grid with step 1 (0 ≤ A < B ≤ 100 000). The second line contains the values table of the function F. The table consists of the integers F(A), F(A+1), …, F(B) separated with a space and/or linefeeds. All the values of the function F are in diapason from –100 000 to 100 000.

Output

Output the only number — the complexity of the function F.

Sample

input output
1 10
1 2 3 4 2 1 -1 3 6 7
3
Problem Author: Alexander Klepinin
Problem Source: USU Championship 2004
Difficulty: 358
 
题意:问一个下标从a到b的数组,它分成若干个不降序列,不升序列的最小划分数
分析:
DP啊。。。有什么特别的吗》
Up[i]表示到i结尾的不降序列
Down[i]表示到i的不升序列
转移就显然了
 
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int a, b, Arr[N];
int Up[N], Down[N]; inline void Input()
{
scanf("%d%d", &a, &b);
For(i, a, b) scanf("%d", Arr + i);
} inline void Solve()
{
Up[a] = Down[a] = ;
For(i, a + , b)
{
if(Arr[i] > Arr[i - ])
{
Up[i] = min(Up[i - ], Down[i - ] + );
Down[i] = min(Up[i - ] + , Down[i - ] + );
}
else if(Arr[i] < Arr[i - ])
{
Down[i] = min(Down[i - ], Up[i - ] + );
Up[i] = min(Up[i - ] + , Down[i - ] + );
}
else
{
Up[i] = min(Up[i - ], Down[i - ] + );
Down[i] = min(Down[i - ], Up[i - ] + );
}
} int Ans = min(Up[b], Down[b]);
printf("%d\n", Ans);
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("I");
#endif
Input();
Solve();
return ;
}

ural 1346. Intervals of Monotonicity的更多相关文章

  1. URAL 1346. Intervals of Monotonicity(DP)

    题目链接 错误的贪了一下,然后D了两下就过了.注意是不上升和不下降..不是上升和下降.. #include <cstring> #include <cstdio> #inclu ...

  2. 1346. Intervals of Monotonicity(dp)

    1346 简单dp #include <iostream> #include<cstdio> #include<cstring> #include<algor ...

  3. [LeetCode] Non-overlapping Intervals 非重叠区间

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  4. [LeetCode] Data Stream as Disjoint Intervals 分离区间的数据流

    Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...

  5. [LeetCode] Merge Intervals 合并区间

    Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8, ...

  6. POJ1201 Intervals[差分约束系统]

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26028   Accepted: 9952 Descri ...

  7. Understanding Binomial Confidence Intervals 二项分布的置信区间

    Source: Sigma Zone, by Philip Mayfield The Binomial Distribution is commonly used in statistics in a ...

  8. Leetcode Merge Intervals

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  9. LeetCode() Merge Intervals 还是有问题,留待,脑袋疼。

    感觉有一点进步了,但是思路还是不够犀利. /** * Definition for an interval. * struct Interval { * int start; * int end; * ...

随机推荐

  1. 二叉树计数(codevs 3112)

    题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数 ...

  2. .pdb文件的使用方法

    1.Demo1:用DLL_01生成my.dll.my.pdb.my.lib文件. 2.Demo2:在DLL_01_APP_02中使用DLL_01的dll. 步骤: 1.vs2008打开DLL_01_A ...

  3. Mac 下 gradle 路径

    /Users/yourname/.gradle/wrapper/dists cmd:cd ~/.gradle/wrapper/dists/

  4. php基础面试题1

    问题1:谈谈你对的PHP的基本认识. 回答:PHP是Hypertext Preprocessor(超文本预处理器)的简称,是一种用来开发动态网站的服务器端脚本语言. 问题2:什么是MVC? 回答:MV ...

  5. 三、jQuery--Ajax基础--Ajax全接触--JSON

    JSON基本概念 JSON:JavaScript对象表示法(JavaScript Object Notation) JSON是存储和交换文本信息的语法,类似XML.它采用键值对的方式来组织,易于人们阅 ...

  6. python中的monkey-patching

    这个技巧我很少用过. 但知道无防. 在运行时改变函数或类的行为, 一般用猴子补丁,原类,装饰器都可以实现. #!/usr/bin/env python # -*- coding: utf-8 -*- ...

  7. SQLAlchemy Core中的异常及事务处理样码

    这部门内容比较简单,立存. #coding=utf-8 from datetime import datetime from sqlalchemy import (MetaData, Table, C ...

  8. C# Qrcode生成二维码支持中文,带图片,带文字 2015-01-22 15:11 616人阅读 评论(1) 收藏

    1.下载Qrcode库源码,下载地址:http://www.codeproject.com/Articles/20574/Open-Source-QRCode-Library 2.打开源码时,部分类库 ...

  9. (一)WebRTC手记之初探

    转自:http://www.cnblogs.com/fangkm/p/4364553.html WebRTC是HTML5支持的重要特性之一,有了它,不再需要借助音视频相关的客户端,直接通过浏览器的We ...

  10. Sublime Text 3 安装Go语言相关插件gosublime

    1.打开Sublime Text,使用快捷键 ctrl+` (左上角Tab键上方,Esc键下方)或者使用菜单 View > Show Console menu,此时将出现Sublime Text ...