1346. Intervals of Monotonicity

Time limit: 1.0 second
Memory limit: 64 MB
It’s well known that a domain of any continuous function may be divided into intervals where the function would increase monotonically or decrease monotonically. A number of intervals of such a partition we will call a complexity of the partition. A complexity of a continuous function is the minimal possible complexity of partition in the domain into the monotonicity intervals.
The notion of complexity may be defined not only for continuous functions. In particular, it is applicable to the functions specified on a grid.

Input

The input contains a description of a function F, specified on a grid. The first line contains two numbers A and B — the first and the last point of the integer grid with step 1 (0 ≤ A < B ≤ 100 000). The second line contains the values table of the function F. The table consists of the integers F(A), F(A+1), …, F(B) separated with a space and/or linefeeds. All the values of the function F are in diapason from –100 000 to 100 000.

Output

Output the only number — the complexity of the function F.

Sample

input output
1 10
1 2 3 4 2 1 -1 3 6 7
3
Problem Author: Alexander Klepinin
Problem Source: USU Championship 2004
Difficulty: 358
 
题意:问一个下标从a到b的数组,它分成若干个不降序列,不升序列的最小划分数
分析:
DP啊。。。有什么特别的吗》
Up[i]表示到i结尾的不降序列
Down[i]表示到i的不升序列
转移就显然了
 
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int a, b, Arr[N];
int Up[N], Down[N]; inline void Input()
{
scanf("%d%d", &a, &b);
For(i, a, b) scanf("%d", Arr + i);
} inline void Solve()
{
Up[a] = Down[a] = ;
For(i, a + , b)
{
if(Arr[i] > Arr[i - ])
{
Up[i] = min(Up[i - ], Down[i - ] + );
Down[i] = min(Up[i - ] + , Down[i - ] + );
}
else if(Arr[i] < Arr[i - ])
{
Down[i] = min(Down[i - ], Up[i - ] + );
Up[i] = min(Up[i - ] + , Down[i - ] + );
}
else
{
Up[i] = min(Up[i - ], Down[i - ] + );
Down[i] = min(Down[i - ], Up[i - ] + );
}
} int Ans = min(Up[b], Down[b]);
printf("%d\n", Ans);
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("I");
#endif
Input();
Solve();
return ;
}

ural 1346. Intervals of Monotonicity的更多相关文章

  1. URAL 1346. Intervals of Monotonicity(DP)

    题目链接 错误的贪了一下,然后D了两下就过了.注意是不上升和不下降..不是上升和下降.. #include <cstring> #include <cstdio> #inclu ...

  2. 1346. Intervals of Monotonicity(dp)

    1346 简单dp #include <iostream> #include<cstdio> #include<cstring> #include<algor ...

  3. [LeetCode] Non-overlapping Intervals 非重叠区间

    Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...

  4. [LeetCode] Data Stream as Disjoint Intervals 分离区间的数据流

    Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...

  5. [LeetCode] Merge Intervals 合并区间

    Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8, ...

  6. POJ1201 Intervals[差分约束系统]

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26028   Accepted: 9952 Descri ...

  7. Understanding Binomial Confidence Intervals 二项分布的置信区间

    Source: Sigma Zone, by Philip Mayfield The Binomial Distribution is commonly used in statistics in a ...

  8. Leetcode Merge Intervals

    Given a collection of intervals, merge all overlapping intervals. For example,Given [1,3],[2,6],[8,1 ...

  9. LeetCode() Merge Intervals 还是有问题,留待,脑袋疼。

    感觉有一点进步了,但是思路还是不够犀利. /** * Definition for an interval. * struct Interval { * int start; * int end; * ...

随机推荐

  1. 关于内存管理/set/get方法

    MRC状态下 1 任何继承NSObject的对象,存放于堆控件中,都需要手动管理内存 .2 基本数据类型放到栈中,对象放到堆空间中,内存是有系统管理的.(int\float\enum\struct) ...

  2. jpg Test

  3. 数据结构之Dijkstra算法

    基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...

  4. 数据库支持emoji表情

    从MySQL5.5.3开始,MySQL 支持一种utf8mb4的字符集,这个字符集能够支持4字节的UTF8编码的字符.utf8mb4字符集能够完美地兼容utf8字符串.在数据存储方面,当一个普通中文字 ...

  5. Python 调试 PDB

    出处:http://blog.163.com/gjx0619@126/blog/static/12740839320114995947700/ 完整 请参考:http://docs.python.or ...

  6. Delphi字符串的基本操作与常用函数

    参考:http://www.cnblogs.com/pchmonster/archive/2011/12/16/2290034.html 结合这个博客一起学习:http://www.cnblogs.c ...

  7. JAVA和PYTHON同时实现AES的加密解密操作---且生成的BASE62编码一致

    终于有机会生产JAVA的东东了. 有点兴奋. 花了一天搞完.. java(关键key及算法有缩减): package com.security; import javax.crypto.Cipher; ...

  8. 記錄一次CRS-0184: Cannot communicate with the CRS daemon的解決

    1. 描述: 使用crs_stat –t 命令查看rac服務,直接報CRS-0184: Cannot communicate with the CRS daemon.錯誤 但是奇怪的是我們的DB是沒有 ...

  9. C# DatrgridView表格控件的一些用法

    public class useDatrgrivView { string conn = null; string sqlComm = null; DataSet das = null; DataGr ...

  10. Axure 全局辅助线(转)

    普通辅助线作用于当前页 全局作用于所有页面 , 包括新建页面 创建普通辅助线直接拉出来 创建全局辅助线 , 在拉出来的时候按住 Ctrl 默认情况下 , 颜色不同 辅助线可以多选 , 用拖选 或 按 ...