$x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$

设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$。

则可以利用$C(i,j)=C(i-1,j-1)+C(i-1,j)$,通过树形DP求出$f$。

时间复杂度$O((n+k)k)$。

#include<cstdio>
const int N=50010,M=155,P=10007;
int n,k,i,j,x,y,S[M][M],fac[M],g[N],v[N<<1],nxt[N<<1],ed;
int d[N][M],u[N][M],size[N],ans,L,now,tmp,A,B,Q;
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void up(int&x,int y){x=(x+y+P)%P;}
void caldown(int x,int y){
d[x][0]=1;
for(int i=g[x];i;i=nxt[i])if(v[i]!=y){
caldown(v[i],x);
up(d[x][0],d[v[i]][0]);
for(int j=1;j<=k;j++)up(d[x][j],d[v[i]][j-1]+d[v[i]][j]);
}
}
void calup(int x,int y){
if(y){
u[x][0]=n-d[x][0];
for(int j=1;j<=k;j++){
u[x][j]=(((u[y][j-1]+u[y][j]+d[y][j-1]+d[y][j]-2*d[x][j-1]-d[x][j])%P)+P)%P;
if(j>1)up(u[x][j],-d[x][j-2]);
}
}
for(int i=g[x];i;i=nxt[i])if(v[i]!=y)calup(v[i],x);
}
int main(){
scanf("%d%d%d%d%d%d%d",&n,&k,&L,&now,&A,&B,&Q);
for(S[0][0]=i=1;i<=k;i++)for(S[i][i]=j=1;j<i;j++)S[i][j]=(j*S[i-1][j]+S[i-1][j-1])%P;
for(fac[0]=i=1;i<=k;i++)fac[i]=fac[i-1]*i%P;
for(i=1;i<n;i++){
now=(now*A+B)%Q,tmp=i<L?i:L;
x=i-now%tmp,y=i+1;
add(x,y),add(y,x);
}
caldown(1,0),calup(1,0);
for(i=1;i<=n;i++){
for(ans=0,j=1;j<=k;j++)up(ans,1LL*S[k][j]*fac[j]*(u[i][j]+d[i][j])%P);
printf("%d\n",ans);
}
return 0;
}

  

BZOJ2159 : Crash 的文明世界的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  3. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  4. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  5. BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数

    题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...

  6. 题解 [BZOJ2159] Crash的文明世界

    题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...

  7. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  8. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  9. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

随机推荐

  1. Python中判断是否为闰年,求输入日期是该年第几天

    #coding = utf-8 def getLastDay(): y = int(input("Please input year :")) m = int(input(&quo ...

  2. ROW_NUMBER()函数的使用

    SQL Server数据库ROW_NUMBER()函数的使用是本文我们要介绍的内容,接下来我们就通过几个实例来一一介绍ROW_NUMBER()函数的使用. 实例如下: .使用row_number()函 ...

  3. 无废话ExtJs 入门教程十一[下拉列表:Combobox]

    无废话ExtJs 入门教程十一[下拉列表:Combobox] extjs技术交流,欢迎加群(201926085) 继上一节内容,我们在表单里加了个一个下拉列表: 1.代码如下: 1 <!DOCT ...

  4. hdu 2203:亲和串(水题,串的练习)

    亲和串 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. Java简明教程

    Java与C++比较概况 C++ Java class Foo { // 声明 Foo 类 public: int x; // 成员变量 Foo(): x() { // Foo 的构造函数Constr ...

  6. NPOI读写Excel

    1.整个Excel表格叫做工作表:WorkBook(工作薄),包含的叫页(工作表):Sheet:行:Row:单元格Cell. 2.NPOI是POI的C#版本,NPOI的行和列的index都是从0开始 ...

  7. jQuery插件treeview点击节点名称不展开、收缩节点 分类: JavaScript 2014-06-16 20:28 539人阅读 评论(0) 收藏

    修改jquery.treeview.js文件中的applyClasses方法(注释掉两行代码): 修改后的applyClasses方法如下: applyClasses: function(settin ...

  8. 关于WCF的一些注意事项

    1.服务代理,建立通道的方法,要注意及时关掉代理,因为服务设置有一个服务的最大连接数,超过这个连接数,则后面的连接将会等待,一直到超时,报错!! 2.在已有配置的基础上,利用代码更改终结点,如果重设了 ...

  9. QQ互联OAuth

    /** * QQ互联 oauth * @author dyllen * */ class Oauth { //取Authorization Code Url const PC_CODE_URL = ' ...

  10. loj 1002(spfa变形)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25828 题意:求所有点到给定的目标顶点的路径上的权值的最大值的最小 ...