Java集合系列:-----------05LinkedList的底层实现
前面,我们已经学习了ArrayList,并了解了fail-fast机制。这一章我们接着学习List的实现类——LinkedList。
和学习ArrayList一样,接下来呢,我们先对LinkedList有个整体认识,然后再学习它的源码;最后再通过实例来学会使用LinkedList。内容包括:
第1部分 LinkedList介绍
第2部分 LinkedList数据结构
第3部分 LinkedList源码解析(基于JDK1.6.0_45)
第4部分 LinkedList遍历方式
第5部分 LinkedList示例
出处:http://www.cnblogs.com/skywang12345/p/3308807.html
LinkedList简介
LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
LinkedList 实现 List 接口,能对它进行队列操作。
LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
LinkedList 是非同步的。
LinkedList构造函数
// 默认构造函数
LinkedList() // 创建一个LinkedList,保护Collection中的全部元素。
LinkedList(Collection<? extends E> collection)
LinkedList的API
LinkedList的API
boolean add(E object)
void add(int location, E object)
boolean addAll(Collection<? extends E> collection)
boolean addAll(int location, Collection<? extends E> collection)
void addFirst(E object)
void addLast(E object)
void clear()
Object clone()
boolean contains(Object object)
Iterator<E> descendingIterator()
E element()
E get(int location)
E getFirst()
E getLast()
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
boolean offer(E o)
boolean offerFirst(E e)
boolean offerLast(E e)
E peek()
E peekFirst()
E peekLast()
E poll()
E pollFirst()
E pollLast()
E pop()
void push(E e)
E remove()
E remove(int location)
boolean remove(Object object)
E removeFirst()
boolean removeFirstOccurrence(Object o)
E removeLast()
boolean removeLastOccurrence(Object o)
E set(int location, E object)
int size()
<T> T[] toArray(T[] contents)
Object[] toArray()
AbstractSequentialList简介
在介绍LinkedList的源码之前,先介绍一下AbstractSequentialList。毕竟,LinkedList是AbstractSequentialList的子类。
AbstractSequentialList 实现了get(int index)、set(int index, E element)、add(int index, E element) 和 remove(int index)这些函数。这些接口都是随机访问List的,LinkedList是双向链表;既然它继承于AbstractSequentialList,就相当于已经实现了“get(int index)这些接口”。
此外,我们若需要通过AbstractSequentialList自己实现一个列表,只需要扩展此类,并提供 listIterator() 和 size() 方法的实现即可。若要实现不可修改的列表,则需要实现列表迭代器的 hasNext、next、hasPrevious、previous 和 index 方法即可。
第2部分 LinkedList数据结构
LinkedList与Collection关系如下图:
LinkedList的本质是双向链表。
(01) LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。
(02) LinkedList包含两个重要的成员:header 和 size。
header是双向链表的表头,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
size是双向链表中节点的个数。
LinkedList的源码解析:
为了更了解LinkedList的原理,下面对LinkedList源码代码作出分析。
在阅读源码之前,我们先对LinkedList的整体实现进行大致说明:
LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。
既然LinkedList是通过双向链表的,但是它也实现了List接口{也就是说,它实现了get(int location)、remove(int location)等“根据索引值来获取、删除节点的函数”}。LinkedList是如何实现List的这些接口的,如何将“双向链表和索引值联系起来的”?
实际原理非常简单,它就是通过一个计数索引值来实现的。例如,当我们调用get(int location)时,首先会比较“location”和“双向链表长度的1/2”;若前者大,则从链表头开始往后查找,直到location位置;否则,从链表末尾开始先前查找,直到location位置。
这就是“双线链表和索引值联系起来”的方法。
好了,接下来开始阅读源码(只要理解双向链表,那么LinkedList的源码很容易理解的)。
package java.util; public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
// 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
private transient Entry<E> header = new Entry<E>(null, null, null); // LinkedList中元素个数
private transient int size = 0; // 默认构造函数:创建一个空的链表
public LinkedList() {
header.next = header.previous = header;
} // 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
} // 获取LinkedList的第一个元素
public E getFirst() {
if (size==0)
throw new NoSuchElementException(); // 链表的表头header中不包含数据。
// 这里返回header所指下一个节点所包含的数据。
return header.next.element;
} // 获取LinkedList的最后一个元素
public E getLast() {
if (size==0)
throw new NoSuchElementException(); // 由于LinkedList是双向链表;而表头header不包含数据。
// 因而,这里返回表头header的前一个节点所包含的数据。
return header.previous.element;
} // 删除LinkedList的第一个元素
public E removeFirst() {
return remove(header.next);
} // 删除LinkedList的最后一个元素
public E removeLast() {
return remove(header.previous);
} // 将元素添加到LinkedList的起始位置
public void addFirst(E e) {
addBefore(e, header.next);
} // 将元素添加到LinkedList的结束位置
public void addLast(E e) {
addBefore(e, header);
} // 判断LinkedList是否包含元素(o)
public boolean contains(Object o) {
return indexOf(o) != -1;
} // 返回LinkedList的大小
public int size() {
return size;
} // 将元素(E)添加到LinkedList中
public boolean add(E e) {
// 将节点(节点数据是e)添加到表头(header)之前。
// 即,将节点添加到双向链表的末端。
addBefore(e, header);
return true;
} // 从LinkedList中删除元素(o)
// 从链表开始查找,如存在元素(o)则删除该元素并返回true;
// 否则,返回false。
public boolean remove(Object o) {
if (o==null) {
// 若o为null的删除情况
for (Entry<E> e = header.next; e != header; e = e.next) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
// 若o不为null的删除情况
for (Entry<E> e = header.next; e != header; e = e.next) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
} // 将“集合(c)”添加到LinkedList中。
// 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
public boolean addAll(Collection<? extends E> c) {
return addAll(size, c);
} // 从双向链表的index开始,将“集合(c)”添加到双向链表中。
public boolean addAll(int index, Collection<? extends E> c) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Object[] a = c.toArray();
// 获取集合的长度
int numNew = a.length;
if (numNew==0)
return false;
modCount++; // 设置“当前要插入节点的后一个节点”
Entry<E> successor = (index==size ? header : entry(index));
// 设置“当前要插入节点的前一个节点”
Entry<E> predecessor = successor.previous;
// 将集合(c)全部插入双向链表中
for (int i=0; i<numNew; i++) {
Entry<E> e = new Entry<E>((E)a[i], successor, predecessor);
predecessor.next = e;
predecessor = e;
}
successor.previous = predecessor; // 调整LinkedList的实际大小
size += numNew;
return true;
} // 清空双向链表
public void clear() {
Entry<E> e = header.next;
// 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
// (01) 设置前一个节点为null
// (02) 设置当前节点的内容为null
// (03) 设置后一个节点为“新的当前节点”
while (e != header) {
Entry<E> next = e.next;
e.next = e.previous = null;
e.element = null;
e = next;
}
header.next = header.previous = header;
// 设置大小为0
size = 0;
modCount++;
} // 返回LinkedList指定位置的元素
public E get(int index) {
return entry(index).element;
} // 设置index位置对应的节点的值为element
public E set(int index, E element) {
Entry<E> e = entry(index);
E oldVal = e.element;
e.element = element;
return oldVal;
} // 在index前添加节点,且节点的值为element
public void add(int index, E element) {
addBefore(element, (index==size ? header : entry(index)));
} // 删除index位置的节点
public E remove(int index) {
return remove(entry(index));
} // 获取双向链表中指定位置的节点
private Entry<E> entry(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Entry<E> e = header;
// 获取index处的节点。
// 若index < 双向链表长度的1/2,则从前先后查找;
// 否则,从后向前查找。
if (index < (size >> 1)) {
for (int i = 0; i <= index; i++)
e = e.next;
} else {
for (int i = size; i > index; i--)
e = e.previous;
}
return e;
} // 从前向后查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int indexOf(Object o) {
int index = 0;
if (o==null) {
for (Entry e = header.next; e != header; e = e.next) {
if (e.element==null)
return index;
index++;
}
} else {
for (Entry e = header.next; e != header; e = e.next) {
if (o.equals(e.element))
return index;
index++;
}
}
return -1;
} // 从后向前查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int lastIndexOf(Object o) {
int index = size;
if (o==null) {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (e.element==null)
return index;
}
} else {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (o.equals(e.element))
return index;
}
}
return -1;
} // 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peek() {
if (size==0)
return null;
return getFirst();
} // 返回第一个节点
// 若LinkedList的大小为0,则抛出异常
public E element() {
return getFirst();
} // 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E poll() {
if (size==0)
return null;
return removeFirst();
} // 将e添加双向链表末尾
public boolean offer(E e) {
return add(e);
} // 将e添加双向链表开头
public boolean offerFirst(E e) {
addFirst(e);
return true;
} // 将e添加双向链表末尾
public boolean offerLast(E e) {
addLast(e);
return true;
} // 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peekFirst() {
if (size==0)
return null;
return getFirst();
} // 返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E peekLast() {
if (size==0)
return null;
return getLast();
} // 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E pollFirst() {
if (size==0)
return null;
return removeFirst();
} // 删除并返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E pollLast() {
if (size==0)
return null;
return removeLast();
} // 将e插入到双向链表开头
public void push(E e) {
addFirst(e);
} // 删除并返回第一个节点
public E pop() {
return removeFirst();
} // 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeFirstOccurrence(Object o) {
return remove(o);
} // 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeLastOccurrence(Object o) {
if (o==null) {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
for (Entry<E> e = header.previous; e != header; e = e.previous) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
} // 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
public ListIterator<E> listIterator(int index) {
return new ListItr(index);
} // List迭代器
private class ListItr implements ListIterator<E> {
// 上一次返回的节点
private Entry<E> lastReturned = header;
// 下一个节点
private Entry<E> next;
// 下一个节点对应的索引值
private int nextIndex;
// 期望的改变计数。用来实现fail-fast机制。
private int expectedModCount = modCount; // 构造函数。
// 从index位置开始进行迭代
ListItr(int index) {
// index的有效性处理
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
// 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
// 否则,从最后一个元素往前查找。
if (index < (size >> 1)) {
next = header.next;
for (nextIndex=0; nextIndex<index; nextIndex++)
next = next.next;
} else {
next = header;
for (nextIndex=size; nextIndex>index; nextIndex--)
next = next.previous;
}
} // 是否存在下一个元素
public boolean hasNext() {
// 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
return nextIndex != size;
} // 获取下一个元素
public E next() {
checkForComodification();
if (nextIndex == size)
throw new NoSuchElementException(); lastReturned = next;
// next指向链表的下一个元素
next = next.next;
nextIndex++;
return lastReturned.element;
} // 是否存在上一个元素
public boolean hasPrevious() {
// 通过元素索引是否等于0,来判断是否达到开头。
return nextIndex != 0;
} // 获取上一个元素
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException(); // next指向链表的上一个元素
lastReturned = next = next.previous;
nextIndex--;
checkForComodification();
return lastReturned.element;
} // 获取下一个元素的索引
public int nextIndex() {
return nextIndex;
} // 获取上一个元素的索引
public int previousIndex() {
return nextIndex-1;
} // 删除当前元素。
// 删除双向链表中的当前节点
public void remove() {
checkForComodification();
Entry<E> lastNext = lastReturned.next;
try {
LinkedList.this.remove(lastReturned);
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next==lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = header;
expectedModCount++;
} // 设置当前节点为e
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
} // 将e添加到当前节点的前面
public void add(E e) {
checkForComodification();
lastReturned = header;
addBefore(e, next);
nextIndex++;
expectedModCount++;
} // 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} // 双向链表的节点所对应的数据结构。
// 包含3部分:上一节点,下一节点,当前节点值。
private static class Entry<E> {
// 当前节点所包含的值
E element;
// 下一个节点
Entry<E> next;
// 上一个节点
Entry<E> previous; /**
* 链表节点的构造函数。
* 参数说明:
* element —— 节点所包含的数据
* next —— 下一个节点
* previous —— 上一个节点
*/
Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
} // 将节点(节点数据是e)添加到entry节点之前。
private Entry<E> addBefore(E e, Entry<E> entry) {
// 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
// 修改LinkedList大小
size++;
// 修改LinkedList的修改统计数:用来实现fail-fast机制。
modCount++;
return newEntry;
} // 将节点从链表中删除
private E remove(Entry<E> e) {
if (e == header)
throw new NoSuchElementException(); E result = e.element;
e.previous.next = e.next;
e.next.previous = e.previous;
e.next = e.previous = null;
e.element = null;
size--;
modCount++;
return result;
} // 反向迭代器
public Iterator<E> descendingIterator() {
return new DescendingIterator();
} // 反向迭代器实现类。
private class DescendingIterator implements Iterator {
final ListItr itr = new ListItr(size());
// 反向迭代器是否下一个元素。
// 实际上是判断双向链表的当前节点是否达到开头
public boolean hasNext() {
return itr.hasPrevious();
}
// 反向迭代器获取下一个元素。
// 实际上是获取双向链表的前一个节点
public E next() {
return itr.previous();
}
// 删除当前节点
public void remove() {
itr.remove();
}
} // 返回LinkedList的Object[]数组
public Object[] toArray() {
// 新建Object[]数组
Object[] result = new Object[size];
int i = 0;
// 将链表中所有节点的数据都添加到Object[]数组中
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
return result;
} // 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public <T> T[] toArray(T[] a) {
// 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
// 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
// 将链表中所有节点的数据都添加到数组a中
int i = 0;
Object[] result = a;
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element; if (a.length > size)
a[size] = null; return a;
} // 克隆函数。返回LinkedList的克隆对象。
public Object clone() {
LinkedList<E> clone = null;
// 克隆一个LinkedList克隆对象
try {
clone = (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
} // 新建LinkedList表头节点
clone.header = new Entry<E>(null, null, null);
clone.header.next = clone.header.previous = clone.header;
clone.size = 0;
clone.modCount = 0; // 将链表中所有节点的数据都添加到克隆对象中
for (Entry<E> e = header.next; e != header; e = e.next)
clone.add(e.element); return clone;
} // java.io.Serializable的写入函数
// 将LinkedList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject(); // 写入“容量”
s.writeInt(size); // 将链表中所有节点的数据都写入到输出流中
for (Entry e = header.next; e != header; e = e.next)
s.writeObject(e.element);
} // java.io.Serializable的读取函数:根据写入方式反向读出
// 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject(); // 从输入流中读取“容量”
int size = s.readInt(); // 新建链表表头节点
header = new Entry<E>(null, null, null);
header.next = header.previous = header; // 从输入流中将“所有的元素值”并逐个添加到链表中
for (int i=0; i<size; i++)
addBefore((E)s.readObject(), header);
} }
总结:
(01) LinkedList 实际上是通过双向链表去实现的。
它包含一个非常重要的内部类:Entry。Entry是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点。
(02) 从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。
(03) LinkedList的克隆函数,即是将全部元素克隆到一个新的LinkedList对象中。
(04) LinkedList实现java.io.Serializable。当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
(05) 由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。
总结起来如下表格:
第一个元素(头部) 最后一个元素(尾部)
抛出异常 特殊值 抛出异常 特殊值
插入 addFirst(e) offerFirst(e) addLast(e) offerLast(e)
移除 removeFirst() pollFirst() removeLast() pollLast()
检查 getFirst() peekFirst() getLast() peekLast()
(06) LinkedList可以作为FIFO(先进先出)的队列,作为FIFO的队列时,下表的方法等价:
队列方法 等效方法
add(e) addLast(e)
offer(e) offerLast(e)
remove() removeFirst()
poll() pollFirst()
element() getFirst()
peek() peekFirst()
(07) LinkedList可以作为LIFO(后进先出)的栈,作为LIFO的栈时,下表的方法等价:
栈方法 等效方法
push(e) addFirst(e)
pop() removeFirst()
peek() peekFirst()
第4部分 LinkedList遍历方式
LinkedList遍历方式
LinkedList支持多种遍历方式。建议不要采用随机访问的方式去遍历LinkedList,而采用逐个遍历的方式。
(01) 第一种,通过迭代器遍历。即通过Iterator去遍历。
for(Iterator iter = list.iterator(); iter.hasNext();)
iter.next();
(02) 通过快速随机访问遍历LinkedList(不要用这种方式去遍历)
int size = list.size();
for (int i=0; i<size; i++) {
list.get(i);
}
(03) 通过另外一种for循环来遍历LinkedList(可以用这种方式)
for (Integer integ:list)
;
(04) 通过pollFirst()来遍历LinkedList
while(list.pollFirst() != null)
;
(05) 通过pollLast()来遍历LinkedList
while(list.pollLast() != null)
;
(06) 通过removeFirst()来遍历LinkedList
try {
while(list.removeFirst() != null)
;
} catch (NoSuchElementException e) {
}
(07) 通过removeLast()来遍历LinkedList
try {
while(list.removeLast() != null)
;
} catch (NoSuchElementException e) {
}
由此可见,遍历LinkedList时,使用removeFist()或removeLast()效率最高。但用它们遍历时,会删除原始数据;若单纯只读取,而不删除,应该使用第3种遍历方式。
无论如何,千万不要通过随机访问去遍历LinkedList!
强烈建立不要用第二种方式去遍历LinkedList。
Java集合系列:-----------05LinkedList的底层实现的更多相关文章
- Java 集合系列 15 Map总结
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 12 TreeMap
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 11 hashmap 和 hashtable 的区别
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列之一:JCF集合框架概述
容器,就是可以容纳其他Java对象的对象.Java Collections Framework(JCF)为Java开发者提供了通用的容器 java集合主要划分为四个部分: Collection(Lis ...
- Java 集合系列之二:List基本操作
1. Java List 1. Java List重要观点 Java List接口是Java Collections Framework的成员. List允许您添加重复元素. List允许您拥有'nu ...
- java集合系列之HashMap源码
java集合系列之HashMap源码 HashMap的源码可真不好消化!!! 首先简单介绍一下HashMap集合的特点.HashMap存放键值对,键值对封装在Node(代码如下,比较简单,不再介绍)节 ...
- java集合系列之LinkedList源码分析
java集合系列之LinkedList源码分析 LinkedList数据结构简介 LinkedList底层是通过双端双向链表实现的,其基本数据结构如下,每一个节点类为Node对象,每个Node节点包含 ...
- java集合系列之ArrayList源码分析
java集合系列之ArrayList源码分析(基于jdk1.8) ArrayList简介 ArrayList时List接口的一个非常重要的实现子类,它的底层是通过动态数组实现的,因此它具备查询速度快, ...
- Java 集合系列之五:Map基本操作
1. Java Map 1. Java Map 重要观点 Java Map接口是Java Collections Framework的成员.但是它不是Collection 将键映射到值的对象.一个映射 ...
- 深入java集合系列文章
搞懂java的相关集合实现原理,对技术上有很大的提高,网上有一系列文章对java中的集合做了深入的分析, 先转载记录下 深入Java集合学习系列 Java 集合系列目录(Category) HashM ...
随机推荐
- 【原】iOS容易造成循环引用的三种场景,就在你我身边!
ARC已经出来很久了,自动释放内存的确很方便,但是并非绝对安全绝对不会产生内存泄露.导致iOS对象无法按预期释放的一个无形杀手是——循环引用.循环引用可以简单理解为A引用了B,而B又引用了A,双方都同 ...
- UIView上的按钮跳转到一个控制器UIViewController上去
我现在有一个UIControllerView 里面addView了一个UIView,我在点击UIView的时候转到另一个UIControllerView,按上面的导航条上面的返回按钮返回第一个UICo ...
- ios 各种机型屏幕尺寸大小
- JAVA中的字符串小结
String字符串是只读的,不可变的 查看String类的源码,可以发现String类是被final关键字修饰的: 另外还可以看下String类源码中的其它方法实现,随便举个可以修改String值的方 ...
- Mina 快速入门
Mina是什么 Mina是一个基于NIO的网络框架,使用它编写程序时,可以专注于业务处理,而不用过于关心IO操作.不论应用程序采用什么协议(TCP.UDP)或者其它的,Mina提供了一套公用的接口,来 ...
- 4、解决native库不兼容
解决native库不兼容 现象: 报警告 [root@hadoop1 hadoop-]# bin/hdfs dfs -ls /input // :: WARN util.NativeCodeLoade ...
- Ztree插件,定位节点时(focus)不能进入可视区域BUG解决方案
相关插件版本: jquery.ztree.exedit-3.4.js jquery.ztree.all-3.4.js jquery-1.8.0.js function onAsyncSuccess(e ...
- C#调用SQL Server分页存储过程
以SQL Server2012提供的offset ..rows fetch next ..rows only为例 e.g. 表名:Tab1 ------------------------------ ...
- C# 读取在存储过程多结果集
--SQL Server 测试环境搭建: Create database Test; go USE [Test] GO if OBJECT_ID('Tab','U') is not null drop ...
- HBase 高性能获取数据(多线程批量式解决办法) + MySQL和HBase性能测试比较
摘要: 在前篇博客里已经讲述了通过一个自定义 HBase Filter来获取数据的办法,在末尾指出此办法的性能是不能满足应用要求的,很显然对于如此成熟的HBase来说,高性能获取数据应该不是问题. ...