211 - The Domino Effect

Time limit: 3.000 seconds

A standard set of Double Six dominoes contains 28 pieces (called bones) each displaying two numbers
from 0 (blank) to 6 using dice-like pips. The 28 bones, which are unique, consist of the following
combinations of pips:
Bone # Pips Bone # Pips Bone # Pips Bone # Pips
1 0 | 0 8 1 | 1 15 2 | 3 22 3 | 6
2 0 | 1 9 1 | 2 16 2 | 4 23 4 | 4
3 0 | 2 10 1 | 3 17 2 | 5 24 4 | 5
4 0 | 3 11 1 | 4 18 2 | 6 25 4 | 6
5 0 | 4 12 1 | 5 19 3 | 3 26 5 | 5
6 0 | 5 13 1 | 6 20 3 | 4 27 5 | 6
7 0 | 6 14 2 | 2 21 3 | 5 28 6 | 6
All the Double Six dominoes in a set can he laid out to display a 7 8 grid of pips. Each layout
corresponds at least one \map" of the dominoes. A map consists of an identical 7 8 grid with the
appropriate bone numbers substituted for the pip numbers appearing on that bone. An example of a
7 8 grid display of pips and a corresponding map of bone numbers is shown below.
7 x 8 grid of pips map of bone numbers
6 6 2 6 5 2 4 1 28 28 14 7 17 17 11 11
1 3 2 0 1 0 3 4 10 10 14 7 2 2 21 23
1 3 2 4 6 6 5 4 8 4 16 25 25 13 21 23
1 0 4 3 2 1 1 2 8 4 16 15 15 13 9 9
5 1 3 6 0 4 5 5 12 12 22 22 5 5 26 26
5 5 4 0 2 6 0 3 27 24 24 3 3 18 1 19
6 0 5 3 4 2 0 3 27 6 6 20 20 18 1 19
Write a program that will analyze the pattern of pips in any 78 layout of a standard set of dominoes
and produce a map showing the position of all dominoes in the set. If more than one arrangement of
dominoes yield the same pattern, your program should generate a map of each possible layout.
Input
The input le will contain several of problem sets. Each set consists of seven lines of eight integers
from 0 through 6, representing an observed pattern of pips. Each set is corresponds to a legitimate
conguration of bones (there will be at least one map possible for each problem set). There is no
intervening data separating the problem sets.
Output
Correct output consists of a problem set label (beginning with Set #1) followed by an echo printing of
the problem set itself. This is followed by a map label for the set and the map(s) which correspond to
the problem set. (Multiple maps can be output in any order.) After all maps for a problem set have
been printed, a summary line stating the number of possible maps appears.
At least three lines are skipped between the output from different problem sets while at least one
line separates the labels, echo printing, and maps within the same problem set.
Note: A sample input le of two problem sets along with the correct output are shown.
Sample Input
5 4 3 6 5 3 4 6
0 6 0 1 2 3 1 1
3 2 6 5 0 4 2 0
5 3 6 2 3 2 0 6
4 0 4 1 0 0 4 1
5 2 2 4 4 1 6 5
5 5 3 6 1 2 3 1
4 2 5 2 6 3 5 4
5 0 4 3 1 4 1 1
1 2 3 0 2 2 2 2
1 4 0 1 3 5 6 5
4 0 6 0 3 6 6 5
4 0 1 6 4 0 3 0
6 5 3 6 2 1 5 3
Sample Output
Layout #1:
5 4 3 6 5 3 4 6
0 6 0 1 2 3 1 1
3 2 6 5 0 4 2 0
5 3 6 2 3 2 0 6
4 0 4 1 0 0 4 1
5 2 2 4 4 1 6 5
5 5 3 6 1 2 3 1
Maps resulting from layout #1 are:
6 20 20 27 27 19 25 25
6 18 2 2 3 19 8 8
21 18 28 17 3 16 16 7
21 4 28 17 15 15 5 7
24 4 11 11 1 1 5 12
24 14 14 23 23 13 13 12
26 26 22 22 9 9 10 10
There are 1 solution(s) for layout #1.
Layout #2:
4 2 5 2 6 3 5 4
5 0 4 3 1 4 1 1
1 2 3 0 2 2 2 2
1 4 0 1 3 5 6 5
4 0 6 0 3 6 6 5
4 0 1 6 4 0 3 0
6 5 3 6 2 1 5 3
Maps resulting from layout #2 are:
16 16 24 18 18 20 12 11
6 6 24 10 10 20 12 11
8 15 15 3 3 17 14 14
8 5 5 2 19 17 28 26
23 1 13 2 19 7 28 26
23 1 13 25 25 7 4 4
27 27 22 22 9 9 21 21
16 16 24 18 18 20 12 11
6 6 24 10 10 20 12 11
8 15 15 3 3 17 14 14
8 5 5 2 19 17 28 26
23 1 13 2 19 7 28 26
23 1 13 25 25 7 21 4
27 27 22 22 9 9 21 4
There are 2 solution(s) for layout #2.

dfs的暴力题,注意输出格式控制,这里容易wa。

题目大意:给出一些7*8的矩阵,每两个相邻的数字可以表示一个骨牌,问说骨牌有多少种摆法。

解题思路:dfs枚举每一个位置,考虑当前位置和下面或右边组成的骨牌,直到所有位置都已安放好骨牌,则为一种方案。

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define pfi(n) printf("%d\n", n)
#define sfi2(n, m) scanf("%d%d", &n, &m)
#define pfi2(n, m) printf("%d %d\n", n, m)
#define pfi3(a, b, c) printf("%d %d %d\n", a, b, c)
#define MAXN 105
#define R 6
#define C 7
const int INF = 0x3f3f3f3f;
const int dir[][] = {{, }, {, }};
int vis[][];
int mp[][];
int tot = ;
int d[][];
int hv[];
int kase = ;
int maxn; void get()
{
int t = ;
repu(i, , )
repu(j, i, ) d[j][i] = d[i][j] = t++;
} void put1()
{
printf("Layout #%d:\n\n", kase);
repu(i, , )
{
repu(j, , ) printf("%4d", mp[i][j]);
puts("");
}
puts("");
} void put2()
{
repu(i, , )
{
repu(j, , )
printf("%4d", vis[i][j]);
puts("");
}
puts("");
} bool Judge(int x, int y)
{
if(x >= && x <= R && y >= && y <= C) return true;
return false;
} void dfs(int x, int y)
{
if(x > R)
{
tot++;
put2();
}
else if(vis[x][y])
{
int dx = x;
int dy = y + ;
if(dy > C)
{
dx++;
dy = ;
}
dfs(dx, dy);
}
else
{
repu(i, , )
{
int dx = x + dir[i][];
int dy = y + dir[i][];
int t, t1, t2;
t1 = mp[x][y];
t2 = mp[dx][dy];
t = d[t1][t2];
if(Judge(dx, dy) && !hv[t] && !vis[dx][dy])
{
vis[dx][dy] = vis[x][y] = t;
hv[t] = ;
int tx = x, ty = y + ;
if(ty > C) tx++, ty = ;
dfs(tx, ty);
vis[dx][dy] = vis[x][y] = ;
hv[t] = ;
}
}
}
return ;
} int main()
{
get();
while(~sfi(mp[][]))
{
repu(i, , )
repu(j, , )
if(i || j) sfi(mp[i][j]);
_cle(vis, );
_cle(hv, );
tot = ;
maxn = ;
if(kase) printf("\n\n\n");
kase++;
put1();
printf("Maps resulting from layout #%d are:\n\n", kase);
dfs(, );
printf("There are %d solution(s) for layout #%d.\n", tot, kase);
}
return ;
}

uva 211(dfs)的更多相关文章

  1. Chinese Mahjong UVA - 11210 (DFS)

    先记录下每一种麻将出现的次数,然后枚举每一种可能得到的麻将,对于这个新的麻将牌,去判断可不可能胡,如果可以胡,就可以把这张牌输出出来. 因为eye只能有一张,所以这个是最好枚举的,就枚举每张牌成为ey ...

  2. UVA 1640(DFS)

    题意:给你a,b两个数 问你a b区间中0 9出现的次数 其实就是求1-n中0-9出现的次数 ans[n]   答案就是ans[b]-ans[a-1] 怎么求的话看代码吧 #include<io ...

  3. LeetCode Subsets II (DFS)

    题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...

  4. LeetCode Subsets (DFS)

    题意: 给一个集合,有n个互不相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: DFS方法:由于集合中的元素是不可能出现相同的,所以不用解决相同的元素而导致重复统计. class Sol ...

  5. HDU 2553 N皇后问题(dfs)

    N皇后问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 在 ...

  6. 深搜(DFS)广搜(BFS)详解

    图的深搜与广搜 一.介绍: p { margin-bottom: 0.25cm; direction: ltr; line-height: 120%; text-align: justify; orp ...

  7. 【算法导论】图的深度优先搜索遍历(DFS)

    关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...

  8. 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现

    1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...

  9. 深度优先搜索(DFS)和广度优先搜索(BFS)

    深度优先搜索(DFS) 广度优先搜索(BFS) 1.介绍 广度优先搜索(BFS)是图的另一种遍历方式,与DFS相对,是以广度优先进行搜索.简言之就是先访问图的顶点,然后广度优先访问其邻接点,然后再依次 ...

随机推荐

  1. c# AES加解密并转ASCII码

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Sec ...

  2. 教你快速高效接入SDK——总体思路和架构

    题记:很多做游戏开发的人,估计都或多或少地接过渠道SDK,什么UC,当乐,91,小米,360......据统计国内市场当前不下于100家渠道,还包括一些没有SDK的小渠道.每个渠道SDK接入的方法呢, ...

  3. Git使用方法

    一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...

  4. Bug测试报告--连连看——天天向上

    测试时间:2016-11-23 20:10 测试者:刘芳芳(nice!团队) 代码地址:HTTPS:https://git.coding.net/jx8zjs/llk.git SSH:git@git. ...

  5. curl_init函数用法

    使用PHP的cURL库可以简单和有效地去抓网页.你只需要运行一个脚本,然后分析一下你所抓取的网 页,然后就可以以程序的方式得到你想要的数据了.无论是你想从从一个链接上取部分数据,或是取一个XML文件并 ...

  6. linux上使用amoeba实现MySql集群,以及读写分离,主从复制

    一.由于是MySql集群,所以就不可能只有一个MySql,需要多个MySql,具体安装步骤,可以参考http://www.cnblogs.com/ywzq/p/4882140.html这个地址进行安装 ...

  7. poj 1091 跳蚤

    跳蚤 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8482   Accepted: 2514 Description Z城 ...

  8. Android 编译时注解解析框架

    2.注解 说道注解,竟然还有各种分类,得,这记不住,我们从注解的作用来反推其分类,帮助大家记忆,然后举例强化大家的记忆,话说注解的作用: 1.标记一些信息,这么说可能太抽象,那么我说,你见过@Over ...

  9. 浅谈用ModelSim+Synplify+Quartus来实现Altera FPGA的仿真

    浅谈用ModelSim+Synplify+Quartus来实现Altera FPGA的仿真 工作内容: Mentor公司的ModelSim是业界最优秀的HDL语言仿真软件,它能提供友好的仿真环境,是业 ...

  10. 18.ssh远程双向无密码登陆

    #ssh远程双向无密码登陆 需求:在192.168.10.100执行ssh 192.168.20.205不需要输入密码直接跳转到205机器 #在192.168.10.100执行命令,我这里使用root ...