Knights of the Round Table

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced
an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere,
while the rest are busy doing heroic deeds around the country. 



Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying
the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:

  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of
    votes, and the argument goes on.)

Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that
there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons).
If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights
of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled. 


Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines
contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ). 



The input is terminated by a block with n = m = 0 . 


Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled. 


Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, 'scanf' recommended to avoid TLE. 

Source


题意:


由于无视武士之间容易打架,Merlin智者为了发生武士打架,有两个规则:
(1):相互仇视的武士不能挨着做,由于是坐在圆桌周围,每一个武士有两个相邻的武士。
(2):围着圆桌做的武士数目必须是奇数个,以确保在发生问题时,能够投票解决。
满足以上两个条件的武士可以坐下来,如果一个武士不可能被安排坐下,他将被从武士的名单中去除。
智者想知道有多少武士将被去除。

方法:
构造无向图,将不相互仇视的建立边。

(1):搜索双连通分量。DFS过程中,用一个栈保存所有经过的点,判断割点,碰到割点就将标记栈的顶点并退栈,直到当前节点停止标记当前割点。标记过的节点在同一个连通分量里。
(2):交叉染色搜索奇偶。在一个节点大于2的双连通分量中,必定存在一个圈经过所有的节点,如果这个圈是奇圈,则该连通分量的所有点都满足,如果是偶圈,如果包含奇圈,必定还有一个奇圈经过剩余的所有节点,因此一个双连通分量里只要存在一个奇圈。
(3):一个点可能满足多个连通分量

#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define LL long long using namespace std; const int Max = 1100; typedef struct Node
{
int num; int next;
}Line; Line Li[Max*100]; int top; int Head[Max]; int low[Max],dfn[Max]; int Map[Max][Max]; int n,m; int Num,num,ant; int Que[Max]; int vis[Max]; int part[Max],color[Max]; void AddNum(int u)
{
Li[top].num=num;
Li[top].next = Head[u];
Head[u] = top++;
} void dfs(int u,int father)
{
vis[u]=1;//表示正在访问 dfn[u]=low[u]=Num++; Que[ant++]=u; for(int i=1;i<=Map[u][0];i++)
{
if(vis[Map[u][i]]==1&&Map[u][i]!=father)
{
low[u]=min(low[u],dfn[Map[u][i]]);
}
if(vis[Map[u][i]]==0)
{
dfs(Map[u][i],u); low[u]=min(low[Map[u][i]],low[u]); if(low[Map[u][i]]>=dfn[u])//子树形成环
{
// 标记
AddNum(u); for(int j=Que[ant];j!=Map[u][i];AddNum(j))
{
j=Que[--ant];
} num++ ;
}
}
} vis[u]=2;//表示已经访问并且处理完
} int OddCycle(int u,int flag)//判断奇环
{
color[u]=flag; for(int i=1;i<=Map[u][0];i++)
{
if(!part[Map[u][i]])
{
continue;
} if(color[Map[u][i]]==0 && OddCycle(Map[u][i],-flag))
{
return 1;
}
if(color[Map[u][i]]==flag)
{
return 1;
}
}
return 0;
} int main()
{
int u,v; while(~scanf("%d %d",&n,&m)&&(n+m))
{ // 数据处理
memset(Map,0,sizeof(Map)); for(int i=1;i<=m;i++)
{
scanf("%d %d",&u,&v); Map[u][v]=Map[v][u]=1;
} for(int i=1;i<=n;i++)
{
Map[i][i]=1;
}
//建图
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
Map[0][j]=Map[i][j];
} for(int j=1;j<=n;j++)
{
if(!Map[0][j])
Map[i][++Map[i][0]]=j;
}
} memset(vis,0,sizeof(vis)); // 标记是否被访问,以及访问的状态 memset(Head,-1,sizeof(Head)); Num = 0; num=0 ; top=0;ant = 0; //去除割边 for(int i=1;i<=n;i++)
{
if(!vis[i])
{
Num = 0;
dfs(i,0);
}
} memset(vis,0,sizeof(vis)); for(int i=0;i<num;i++)//判断奇环
{ memset(part,0,sizeof(part)); memset(color,0,sizeof(color)); for(int j=1;j<=n;j++)
{
for(int k=Head[j];k!=-1;k=Li[k].next)
{
if(Li[k].num == i)
{
part[j]=1;
break;
}
}
} for(int j=1;j<=n;j++)
{
if(part[j])
{
if(OddCycle(j,1))
{
for(int k=1;k<=n;k++)
{
vis[k]+=part[k];
}
}
break;
}
}
} int ans = 0; for(int i=1;i<=n;i++)
{
if(!vis[i])
{
ans++;
}
} printf("%d\n",ans);
}
return 0;
}

Knights of the Round Table-POJ2942(双连通分量+交叉染色)的更多相关文章

  1. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  2. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  3. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  4. POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈

    题目链接: poj2942 题意: 有n个人,能够开多场圆桌会议 这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置 且每场圆桌会议的人数仅仅能为奇书 问有多少人不能參加 解题思路: 首先 ...

  5. POJ2942 Knights of the Round Table 点双连通分量 二分图判定

    题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...

  6. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  7. UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)

    题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...

  8. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  9. [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)

    建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点                             ...

随机推荐

  1. CI框架不能有Index控制器

    今天部署了ci框架,想用用它.创建别的控制器没什么错误.但是我创建了一个Index控制器,并访问了index方法,报错了.但是直接在方法中写输出就没事.而且方法名称改为其他部位index的也能访问. ...

  2. PHP脱mysql脚本

    <?php $SQL_Server="xxxxxx:3306"; $SQL_User="xxxx"; $SQL_Name="xxxx" ...

  3. paramter的添加

    public string GetUserIdByName(string UserName, string pwd)    {        string sql = @"select Na ...

  4. WooCommerce代码收集

    修改首页和分类页面每页产品数量 每页显示多少产品默认跟随设置 » 阅读设置 » 博客页面至多显示的值,若要产品索引页和博文索引页使用不同的设置,可以使用下面的代码为产品索引页单独设置每页产品数. ad ...

  5. jsp&Sevelet基础详解

    1.用scriptlet标签在jsp中嵌入java代码: (1).<%!...%>可以在里面定义全局变量,方法,类,一般写在<head>内 (2).<%%>定义的是 ...

  6. 四则运算之C++实现篇

    对四则运算的一些要求如下: 1.题目避免重复:2.可定制(数量/打印方式):3.可以控制下列参数:   是否有乘除法.数值范围.加减有无负数.除法有无余数.否支持分数 (真分数, 假分数, …): 一 ...

  7. viewPager的基本使用

    viewPager是android扩展包v4中的类,这个类可以使用户左右切换当前的view. 特性: 1.viewPager直接继承了viewGroup类,所以它是一个容器类,可以在其中添加其它的vi ...

  8. js == 判断

    根据阮一峰介绍的算法文章分12部分可判断: 如果x不是正常值(比如抛出一个错误),中断执行. 如果y不是正常值,中断执行. 如果Type(x)与Type(y)相同,执行严格相等运算x === y. 如 ...

  9. git pull all braches

    控制台下执行如下: git branch -r | grep -v '\->' | while read remote; do git branch --track "${remote ...

  10. Python常用模块之sys

    Python常用模块之sys sys模块提供了一系列有关Python运行环境的变量和函数. 常见用法 sys.argv 可以用sys.argv获取当前正在执行的命令行参数的参数列表(list). 变量 ...