洛谷U4807抽水机[最小生成树]
题目背景
kkk被Farmer John和他的奶牛贝茜虐的很惨,然后她也想体验下一个Farmer的生活。但她又懒得种地,就选择养鱼。
题目描述
这些鱼都是热带鱼(废话),很娇贵(比kkk娇贵),要经常换水,要不然每当kkk走过来的时候鱼们就会一起使劲拍尾巴导致kkk并不情愿的洗个冷水澡(别问我热带鱼为毛这么机智)。但kkk并不勤快,他只想花费最少的力气以实现换水。
kkk的鱼塘可以分成n*n个独立小池,每两个相邻的小池间都有一个水闸控制水位。开启一个水闸需要花费的力气是这两个相邻的小池的水位之差。已知各个小池的水位,kkk想知道她要给每个小池都换水至少需要多少力气。
输入输出格式
输入格式:
第一行一个整数n
接下来n*n个数表示各个小池的水位
输出格式:
最小力气
输入输出样例
3
1 2 3
4 5 6
7 8 9
12
说明
1<=n<=100
1<=水位<=100
题目不清楚,水闸同时打开,要不然还得考虑连通器原理
裸的最小生成树
注意数组开多大,因为这个WA好几次,最后只有81分了,导致比赛与第一无缘
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,a[N][N];
inline int id(int i,int j){return (i-)*n+j;}
struct edge{
int u,v,w;
bool operator <(const edge &rhs)const{return w<rhs.w;}
}e[N*(N-)*];
int cnt=;
inline void ins(int u,int v,int w){
cnt++;
e[cnt].u=u;e[cnt].v=v;e[cnt].w=w;
}
int fa[N*N];
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
long long kruskal(){
n*=n;
sort(e+,e++cnt);
long long ans=,num=;
for(int i=;i<=n;i++) fa[i]=i;
for(int i=;i<=cnt;i++){
int u=e[i].u,v=e[i].v;
int x=find(u),y=find(v);
if(x!=y){
ans+=e[i].w;
fa[x]=y;
if(++num==n-) break;
}
}
return ans;
}
int main(){
n=read();
m=*n*(n-);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
a[i][j]=read();
//a[i][j]=i+j;
if(j!=) ins(id(i,j),id(i,j-),abs(a[i][j]-a[i][j-]) );
if(i!=) ins(id(i,j),id(i-,j),abs(a[i][j]-a[i-][j]) );
}
cout<<kruskal();
//printf("%d %d",m,cnt);
}
洛谷U4807抽水机[最小生成树]的更多相关文章
- 【洛谷】【最小生成树】P1195 口袋的天空
[题目背景:] 小杉坐在教室里,透过口袋一样的窗户看口袋一样的天空. 有很多云飘在那里,看起来很漂亮,小杉想摘下那样美的几朵云,做成棉花糖. [题目描述:] 给你云朵的个数N,再给你M个关系,表示哪些 ...
- [洛谷P4208][JSOI2008]最小生成树计数
题目大意:有$n$个点和$m$条边(最多有$10$条边边权相同),求最小生成树个数 题解:对于所有最小生成树,每种边权的边数是一样的.于是就可以求出每种边权在最小生成树中的个数,枚举这种边的边集,求出 ...
- 洛谷P4208 [JSOI2008]最小生成树计数——题解
题目传送 前置知识:对于同一个图的所有最小生成树,权值相等的边的数量相同. 可以简单证明一下: 我们可以从kruskal的过程考虑.这个算法把所有边按权值大小从小到大排序,然后按顺序看每条边,只要加上 ...
- [洛谷P3366] [模板] 最小生成树
存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...
- 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)
qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...
- Solution -「JSOI2008」「洛谷 P4208」最小生成树计数
\(\mathcal{Description}\) link. 给定带权简单无向图,求其最小生成树个数. 顶点数 \(n\le10^2\),边数 \(m\le10^3\),相同边权的边数不 ...
- 【洛谷】【最小生成树】P1536 村村通
[题目描述:] 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府"村村通工程"的目标是使全市任何两个城镇间都可以实现交通(但不一定有直接的道路 ...
- 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)
洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...
- 洛谷P4172 [WC2006]水管局长 (LCT,最小生成树)
洛谷题目传送门 思路分析 在一个图中,要求路径上最大边边权最小,就不难想到最小生成树.而题目中有删边的操作,那肯定是要动态维护啦.直接上LCT维护边权最小值(可以参考一下蒟蒻的Blog) 这时候令人头 ...
随机推荐
- CSS级联和继承
2016-11-06 <CSS入门经典>第七章 1.在HTML中使用CSS样式表的三种方式: (1)内联的样式表. eg:<em style="background-whi ...
- 原生andriod浏览器回退后dom(click)事件全体失效问题探究
问题描述 今天同事遇到一个神一样的BUG: 在原生浏览器下,为dom元素绑定一个click事件,其中有个a标签外链,点击a后进入其他页面,点击浏览器后退后,页面点击事件全体失效! 我于是用ios测了下 ...
- CSS3动画(个人理解)
随着学习的深入,越来越觉得Css3动画的重要,虽然JQ自定义动画和动画回调函数必须掌握,但是css3动画做起来更加绚丽,更加方便!1.常规使用1.1 使用transition属性,一般我们是配合hov ...
- arcgis engine 调用arcgis server服务
首先需要添加两个引用: using ESRI.ArcGIS.GISClient;using ESRI.ArcGIS.DataSourcesRaster; /// <summary> /// ...
- js基本算法:冒泡排序,二分查找
知识扩充: 时间复杂度:算法的时间复杂度是一个函数,描述了算法的运行时间.时间复杂度越低,效率越高. 自我理解:一个算法,运行了几次时间复杂度就为多少,如运行了n次,则时间复杂度为O(n). 1.冒泡 ...
- Atitit.木马病毒强制强行关闭360 360tray.exe的方法
Atitit.木马病毒强制强行关闭360 360tray.exe的方法 1. taskkill /im 进程名称1 2. 用 wmic process where name="进程名称&qu ...
- Laravel 5 性能优化技巧
说明 性能一直是 Laravel 框架为人诟病的一个点,所以调优 Laravel 程序算是一个必学的技能. 接下来分享一些开发的最佳实践,还有调优技巧,大家有别的建议也欢迎留言讨论. 这里是简单的列表 ...
- C语言的基本输入与输出函数(全解)
C语言的基本输入与输出函数 1.1.1 格式化输入输出函数 Turbo C2.0 标准库提供了两个控制台格式化输入. 输出函数printf() 和scanf(), 这两个函数可以在标准输入输出设备上以 ...
- CoreDataStack
- Android微信登陆
前言 分享到微信朋友圈的功能早已经有了,但微信登录推出并不久,文档写的也并不是很清楚,这里记录分享一下. 声明 欢迎转载,但请保留文章原始出处:) 博客园:http://www.cnblogs.co ...