【bzoj1497】 NOI2006—最大获利
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 (题目链接)
题意
给出一个图,每一个点有一个负点权,每一条边有一个边权。选择某一条边的前提是选择这条边的两个端点。问如何选择使的边和点的权值和最大。
Solution
最大权闭合子图。
对于每条边,其前提是选择两个端点,像这种依赖性问题,很容易联想到最大权闭合子图。我们将每条边拆成额外的一个点,点权为边权,再从这个点向它的两个端点连边。这就表示选择这个额外的点,就必须选择其两个端点。于是问题就转化为了求最大权闭合子图。
对于求解最大权闭合子图的方法。新增附加原点s和汇点t,从s向所有正权点连边,容量为点权;从所有负权点向t连边,容量为点权的相反数;原图中的所有边的容量赋为正无穷。ans=正点权和-最小割。割了正权点表示不选,割了负权点表示选。
细节
注意空间问题。
代码
// bzoj1497
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define MOD 10000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
struct edge {int to,next,w;}e[maxn<<1];
int d[maxn],head[maxn];
int n,m,cnt=1,ans; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs(int s,int t) {
memset(d,-1,sizeof(d));
queue<int> q;q.push(s);d[s]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[t]>0;
}
int dfs(int x,int f) {
if (x==n+m+1 || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs(0,n+m+1)) ans+=dfs(0,inf);
}
int main() {
scanf("%d%d",&n,&m);
int res=0;
for (int x,i=1;i<=n;i++) {
scanf("%d",&x);
link(i,n+m+1,x);
}
for (int u,v,w,i=1;i<=m;i++) {
scanf("%d%d%d",&u,&v,&w);
res+=w;link(0,i+n,w);
link(i+n,u,inf);link(i+n,v,inf);
}
Dinic();
printf("%d",res-ans);
return 0;
}
【bzoj1497】 NOI2006—最大获利的更多相关文章
- BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4375 Solved: 2142[Submit][Status] ...
- BZOJ 1497 [NOI2006]最大获利
1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...
- bzoj1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...
- [bzoj1497][NOI2006]最大获利_网络流_最小割
最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...
- Bzoj1497 [NOI2006]最大获利
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 4449 Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...
- BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP
原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...
- BZOJ1497[NOI2006]最大获利——最大权闭合子图
题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...
- 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利
[题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...
- 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利
最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...
- bzoj1497 [NOI2006]最大获利 最大权闭合子图
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...
随机推荐
- 多个mapper location时, mybatis spring的自动扫描配置
1. MapperScannerConfigurer 里面的basePackage, 多个package用逗号分隔 2. SqlSessionFactoryBean里面的mapperLocations ...
- C# 发送邮件,QQ企业邮箱测试成功
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.N ...
- codevs http://www.codevs.cn/problem/?problemset_id=1 循环、递归、stl复习题
12.10高一练习题 1.要求: 这周回顾复习的内容是循环.递归.stl. 不要因为题目简单就放弃不做,现在就是练习基础. 2.练习题: (1)循环 题目解析与代码见随笔分类 NOI题库 htt ...
- JMS + jboss EAP 6.2 示例
.Net中如果需要消息队列功能,可以很方便的使用微软自带的MSMQ,对应到Java中,这个功能就是JMS(Java Message Service). 下面以Jboss EAP 6.2环境,介绍一下基 ...
- ZH奶酪:Java调用NLPIR汉语分词系统
NLPIR工具 支持自定义词表: 可以离线使用: 下载地址:http://ictclas.nlpir.org/newsdownloads?DocId=389 在线演示:http://ictclas.n ...
- 关于viewpager 里嵌套 listview 同时实现翻页功能的“java.lang.IllegalStateException: The specified child..."异常处理
这几天做项目用到了ViewPager,因为它可以实现左右划动多个页面的效果,然后 再每个页面里使用ListView,运行时总是出现”PagerAdapter java.lang.IllegalStat ...
- 发布我的图片预加载控件YPreLoadImg v1.0
介绍 大家好!很高兴向大家介绍我的图片预加载控件YPreLoadImg.它可以帮助您预加载图片,并且能显示加载的进度,在预加载完成后调用指定的方法. YPreLoadImg控件由一个名为PreLoad ...
- OS存储器管理(三) 虚拟存储器
基本概念与实现 1)局部性原理 在一段时间内,运行的作业程序仅访问(涉及到)一部分作业代码,即不会涉及整个地址空间.即在一段时间间隔内,仅装入一部分代码,作业照样能正常运行 2)虚拟存储器的引入 作业 ...
- Python3.5 + django1.8.5 安装”import pymysql pymysql.install_as_MySQLdb()”的解决方法
最近在学习Python,打算先看两个在线教程,再在github上找几个开源的项目练习一下,在学到"被解放的姜戈"时遇到django同步数据库时无法执行的错误,记录一下. 错误现象: ...
- js的this什么时候会出现报错
var aa ={ name:"boy", age:, like: function(){ console.log(this.name); } } //aa.like();//这样 ...