http://www.lydsy.com/JudgeOnline/problem.php?id=1497 (题目链接)

题意

  给出一个图,每一个点有一个负点权,每一条边有一个边权。选择某一条边的前提是选择这条边的两个端点。问如何选择使的边和点的权值和最大。

Solution

  最大权闭合子图。

  对于每条边,其前提是选择两个端点,像这种依赖性问题,很容易联想到最大权闭合子图。我们将每条边拆成额外的一个点,点权为边权,再从这个点向它的两个端点连边。这就表示选择这个额外的点,就必须选择其两个端点。于是问题就转化为了求最大权闭合子图。

  对于求解最大权闭合子图的方法。新增附加原点s和汇点t,从s向所有正权点连边,容量为点权;从所有负权点向t连边,容量为点权的相反数;原图中的所有边的容量赋为正无穷。ans=正点权和-最小割。割了正权点表示不选,割了负权点表示选。

细节

  注意空间问题。

代码

// bzoj1497
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define MOD 10000
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
struct edge {int to,next,w;}e[maxn<<1];
int d[maxn],head[maxn];
int n,m,cnt=1,ans; void link(int u,int v,int w) {
e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
e[++cnt]=(edge){u,head[v],0};head[v]=cnt;
}
bool bfs(int s,int t) {
memset(d,-1,sizeof(d));
queue<int> q;q.push(s);d[s]=0;
while (!q.empty()) {
int x=q.front();q.pop();
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
d[e[i].to]=d[x]+1;
q.push(e[i].to);
}
}
return d[t]>0;
}
int dfs(int x,int f) {
if (x==n+m+1 || f==0) return f;
int w,used=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
w=dfs(e[i].to,min(e[i].w,f-used));
used+=w;
e[i].w-=w;e[i^1].w+=w;
if (used==f) return used;
}
if (!used) d[x]=-1;
return used;
}
void Dinic() {
while (bfs(0,n+m+1)) ans+=dfs(0,inf);
}
int main() {
scanf("%d%d",&n,&m);
int res=0;
for (int x,i=1;i<=n;i++) {
scanf("%d",&x);
link(i,n+m+1,x);
}
for (int u,v,w,i=1;i<=m;i++) {
scanf("%d%d%d",&u,&v,&w);
res+=w;link(0,i+n,w);
link(i+n,u,inf);link(i+n,v,inf);
}
Dinic();
printf("%d",res-ans);
return 0;
}

  

【bzoj1497】 NOI2006—最大获利的更多相关文章

  1. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  2. BZOJ 1497 [NOI2006]最大获利

    1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...

  3. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  4. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  5. Bzoj1497 [NOI2006]最大获利

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4449  Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  6. BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...

  7. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  8. 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利

    [题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...

  9. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  10. bzoj1497 [NOI2006]最大获利 最大权闭合子图

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...

随机推荐

  1. lodop打印控件一点记录

    今天初步接触了下打印控件 LODOP实现了自动分页,高度宽度都可以自己设定来分页. 页码,使用LODOP.SET_PRINT_STYLE("ItemType", 2); LODOP ...

  2. 智普教育Python培训之Python开发视频教程网络爬虫实战项目

    网络爬虫项目实训:看我如何下载韩寒博客文章Python视频 01.mp4 网络爬虫项目实训:看我如何下载韩寒博客文章Python视频 02.mp4 网络爬虫项目实训:看我如何下载韩寒博客文章Pytho ...

  3. python数字图像处理(18):高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含 ...

  4. spring注解scheduled实现定时任务

    只想说,spring注解scheduled实现定时任务使用真的非常简单. 一.配置spring.xml文件 1.在beans加入xmlns:task="http://www.springfr ...

  5. 迭代器模式的一种应用场景以及C#对于迭代器的内置支持

    迭代器模式 先放上gof中对于迭代器模式的介绍镇楼 意图 提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示. 别名 游标(Cursor). 动机 一个聚合对象, 如列表(li ...

  6. dev gridcontrol纵向合并单元格设置

    1.要设置gridcontrol中指定列(columns中选中指定列)的AllowMerge属性为true; 2.要设置gridview中AllowCellMerge的属性为true; 3.如果只合并 ...

  7. C# 对sharepoint 列表的一些基本操作,包括添加/删除/查询/上传文件给sharepoint list添加数据

    转载:http://www.cnblogs.com/kivenhou/archive/2013/02/22/2921954.html 操作List前请设置SPWeb的allowUnsafeUpdate ...

  8. Linux System and Performance Monitoring

    写在前面:本文是对OSCon09的<Linux System and Performance Monitoring>一文的学习笔记,主要内容是总结了其中的要点,以及加上了笔者自己的一些理解 ...

  9. Java--笔记(5)

    41.面向对象的五大基本原则 (1)单一职责原则(SRP) (2)开放封闭原则(OCP) (3)里氏替换原则(LSP) (4)依赖倒置原则(DIP) (5)接口隔离原则(ISP) 单一职责原则(SRP ...

  10. 初步认识ajax(个人整理)

    通过使用ajax可以实现页面的部分动态化 ajax可以发送一个请求去服务端,而服务端则发送回一小段数据给客户端,这样就可以避免加载整个页面,因为很多时候页面只需要刷新某一部分的数据,而其他大部分体就不 ...