【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治
1492: [NOI2007]货币兑换Cash
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 3396 Solved: 1434
[Submit][Status][Discuss]
Description
Input
Output
只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。
Sample Input
1 1 1
1 2 2
2 2 3
Sample Output
HINT
Source
Solution
斜率优化DP,典型的不单调
$f[i]=max(f[i],f[j]/(a[j]*rate[j]+b[j])*rate[j]*a[i]+f[j]/(a[j]*rate[j]+b[j])*b[i])$
至于CDQ分治的理论:移步 折越
启发:
1.斜率优化DP变化万千..
2.熟练掌握分治算法能够产生很多神奇的功效(xyx好像很喜欢分治)
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define maxn 200010
struct DayNode
{
double A,B,Ra,k; int id;
bool operator < (const DayNode & T) const
{return k<T.k;}
}a[maxn],tmpa[maxn];
struct PointNode{double x,y;}p[maxn],tmpp[maxn];
int N;
double dp[maxn];
int tmp1[maxn],tmp2[maxn],stack[maxn];
#define inf 1e9
#define eps 1e-9
double slope(int l1,int l2)
{
if (!l1) return -inf;
if (!l2) return inf;
if (fabs(p[l1].x-p[l2].x)<=eps) return -inf;
return (p[l1].y-p[l2].y)/(p[l1].x-p[l2].x);
}
void CDQ(int l,int r)
{
if (l==r)
{
dp[l]=max(dp[l],dp[l-]);
p[l].y=dp[l]/(a[l].Ra*a[l].A+a[l].B);
p[l].x=a[l].Ra*p[l].y;
return;
}
int mid=(l+r)>>,L,R;
L=l; R=mid+;
for (int i=l; i<=r; i++)
if (a[i].id<=mid) tmpa[L++]=a[i]; else tmpa[R++]=a[i];
for (int i=l; i<=r; i++) a[i]=tmpa[i];
CDQ(l,mid);
int top=;
for (int i=l; i<=mid; i++)
{
while (top> && slope(stack[top],stack[top-])<slope(i,stack[top-])+eps) top--;
stack[++top]=i;
}
int Top=;
for (int i=r; i>=mid+; i--)
{
while (Top<top && slope(stack[Top],stack[Top+])+eps>a[i].k) Top++;
dp[a[i].id]=max(dp[a[i].id],p[stack[Top]].x*a[i].A+p[stack[Top]].y*a[i].B);
}
CDQ(mid+,r);
L=l; R=mid+;
for (int i=l; i<=r; i++)
if (((p[L].x<p[R].x+eps || (fabs(p[L].x-p[R].x)<=eps && p[L].y<p[R].y+eps)) || R>r) && L<=mid)
tmpp[i]=p[L++];
else tmpp[i]=p[R++];
for (int i=l; i<=r; i++) p[i]=tmpp[i];
}
int main()
{
scanf("%d%lf",&N,&dp[]);
for (int i=; i<=N; i++)
scanf("%lf%lf%lf",&a[i].A,&a[i].B,&a[i].Ra),a[i].k=-a[i].A/a[i].B,a[i].id=i;
sort(a+,a+N+);
CDQ(,N);
//for (int i=1; i<=N; i++) printf("%d %d %.3lf %.3lf %.3lf %.3lf \n",i,a[i].id,a[i].A,a[i].B,a[i].Ra,a[i].k);
printf("%.3lf\n",dp[N]);
return ;
}
【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治的更多相关文章
- BZOJ.1492.[NOI2007]货币兑换(DP 斜率优化 CDQ分治/Splay)
BZOJ 洛谷 如果某天能够赚钱,那么一定会在这天把手上的金券全卖掉.同样如果某天要买,一定会把所有钱花光. 那么令\(f_i\)表示到第\(i\)天所拥有的最多钱数(此时手上没有任何金券),可以选择 ...
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...
- [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5838 Solved: 2345[Submit][Sta ...
- 【BZOJ1492】[NOI2007]货币兑换Cash 斜率优化+cdq分治
[BZOJ10492][NOI2007]货币兑换Cash Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下简称B券).每 ...
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- BZOJ 1492 货币兑换 Cash CDQ分治
这题n2算法就是一个维护上凸包的过程. 也可以用CDQ分治做. 我的CDQ分治做法和网上的不太一样,用左边的点建立一个凸包,右边的点在上面二分. 好处是思路清晰,避免了凸包的插入删除,坏处是多了一个l ...
- LUOGU P4027 [NOI2007]货币兑换 (斜率优化+CDQ分治)
传送门 解题思路 题目里有两句提示一定要看清楚,要不全买要不全卖,所以dp方程就比较好列,f[i]=max(f[j]*rate[j]*a[i])/(rate[j]*a[j]+b[j])+(f[j]*b ...
- bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)
设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...
随机推荐
- winform程序重启
winform程序重启的方法: private void ReStart() { string processName = System.Diagnostics.Process.GetCurrentP ...
- Winform调用系统的剪切,复制,粘贴文件功能
// <summary> /// 复制或剪切文件至剪贴板(方法) /// </summary> /// <param name="files"> ...
- ASP.NET MVC的Web Api的实练
学习ASP.NET MVC一年多来,现在该学学Web Api了.API与ASP.NET MVC的Controller差不多.前者只是返回数据序列化和发送给客户端: 后者返回View或Render Vi ...
- [资料]自动化e2e测试 -- WebDriverJS,Jasmine和Protractor
1. http://sentsin.com/web/658.html 2. http://www.tuicool.com/articles/AnE3Mb 3. http://www.doc88.com ...
- MPLS基础
1.1 MPLS简介 MPLS(Multiprotocol Label Switching,多协议标签交换)是一种新兴的IP骨干网技术.MPLS在无连接的IP网络上引入面向连接的标签交换概念,将第三 ...
- P值与significant(显著性)的理解
P值与significant的理解 来源:广州市统计局 发表日期:2015-01-21 P值可以理解为结论的风险大小,也就是根据数据得出的结果有多大的错误风险,P值越小,结论错误的风险越小 ...
- Recommending branded products from social media -RecSys 2013-20160422
1.Information publication:RecSys 2013 author:zhengyong zhang 2.What 是对上一篇论文的拓展:利用社交媒体中用户信息 对用户购买的类别排 ...
- android开发------初识Activity
之前我们简单说过,Activity实际上是一个窗体,用来存放我们的程序外观. 我们先来创建一个空的Activity,不加载任何layout.要做的是,定义自己的类,继承android的Activity ...
- 十天冲刺---Day5
站立式会议 站立式会议内容总结: 燃尽图 照片 PM确实不应该交给组内编码最强的人来做. 编码的过程还要考虑整个项目的流程压力较大. 需要队友的支持和沟通.
- 在Word2013中多次应用格式刷
顾名思义,格式刷是为了方便需要跨区域操作时候,能快速的应用格式到相应文本.那么怎么使用word进行格式刷的多次使用呢.我们先来看单次的,这个比较容易,只要在先需要的格式单击一次格式刷,再到需要的文本执 ...