【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图
4423: [AMPPZ2013]Bytehattan
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 144 Solved: 103
[Submit][Status][Discuss]
Description
比特哈顿镇有n*n个格点,形成了一个网格图。一开始整张图是完整的。
有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通。
Input
第一行包含两个正整数n,k(2<=n<=1500,1<=k<=2n(n-1)),表示网格图的大小以及操作的个数。
接下来k行,每行包含两条信息,每条信息包含两个正整数a,b(1<=a,b<=n)以及一个字符c(c=N或者E)。
如果c=N,表示删除(a,b)到(a,b+1)这条边;如果c=E,表示删除(a,b)到(a+1,b)这条边。
数据进行了加密,对于每个操作,如果上一个询问回答为TAK或者这是第一个操作,那么只考虑第一条信息,否则只考虑第二条信息。
数据保证每条边最多被删除一次。
Output
输出k行,对于每个询问,如果仍然连通,输出TAK,否则输出NIE。
Sample Input
2 1 E 1 2 N
2 1 N 1 1 N
3 1 N 2 1 N
2 2 N 1 1 N
Sample Output
TAK
NIE
NIE
HINT
Source
Solution
比较厉害的思路;
维护图的连通性,很容易想到并查集,但是并查集并不支持删边,或者用线段树?(堵塞的交通)
应该不是,那么考虑转化删边为加边,图是平面图,利用其性质
转成对偶图,把每个方格围城的面看做一个点,就可以使删边操作变成加边操作,就会方便多了,剩下的按照题目要求搞搞就好
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define maxn 1510
int fa[maxn*maxn],n,k;
void init(){for (int i=; i<=n*n; i++) fa[i]=i;}
int find(int x){if (fa[x]==x) return x; return fa[x]=find(fa[x]);}
void merge(int x,int y){int f1=find(x),f2=find(y); fa[f1]=f2;}
int pos[maxn][maxn];
int main()
{
scanf("%d %d",&n,&k);
int cnt=;
for (int i=; i<n; i++)
for (int j=; j<n; j++)
pos[i][j]=cnt++;
init(); int ans=;
for (int i=; i<=k; i++)
{
int a1,b1,a2,b2,p1,p2; char c1[],c2[];
scanf("%d%d%s%d%d%s",&a1,&b1,c1,&a2,&b2,c2);
if (ans)
if (c1[]=='E') p1=pos[a1][b1],p2=pos[a1][b1-];
else p1=pos[a1][b1],p2=pos[a1-][b1];
else
if (c2[]=='E') p1=pos[a2][b2],p2=pos[a2][b2-];
else p1=pos[a2][b2],p2=pos[a2-][b2];
//printf("%d %d\n",p1,p2);
if (find(p1)!=find(p2)) ans=,merge(p1,p2); else ans=;
if (ans) puts("TAK"); else puts("NIE");
}
return ;
}
一开始自己的写法好像出了点问题...
【BZOJ-4423】Bytehattan 并查集 + 平面图转对偶图的更多相关文章
- BZOJ 4423: [AMPPZ2013]Bytehattan 并查集+平面图转对偶图
4423: [AMPPZ2013]Bytehattan Time Limit: 3 Sec Memory Limit: 128 MB Submit: 277 Solved: 183 [Submit ...
- bzoj 3237 连通图 - 并查集 - 线段树
Input Output Sample Input 4 5 1 2 2 3 3 4 4 1 2 4 3 1 5 2 2 3 2 1 2 Sample Output Connected Disconne ...
- BZOJ 1050 旅行(并查集)
很好的一道题.. 首先把边权排序.然后枚举最小的边,再依次添加不小于该边的边,直到s和t联通.用并查集维护即可. # include <cstdio> # include <cstr ...
- BZOJ 1015 星球大战(并查集)
正着不好搞,考虑倒着搞.倒着搞就是一个并查集. # include <cstdio> # include <cstring> # include <cstdlib> ...
- BZOJ 4668: 冷战 并查集&&暴力LCA(雾)
利用并查集按秩合并,保存每个点合并的时间: 求时间时,就一直跳u=fa[u],并记录路径上时间的最大值,代表最后一次合并的时间 #include<cstdio> #include<i ...
- bzoj 4668 冷战——并查集结构
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 不路径压缩,维护并查集的树的结构,查询链上最大值.按秩合并就可以暴爬. #includ ...
- bzoj 4668 冷战 —— 并查集按秩合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4668 按秩合并维护并查集的树结构,然后暴力找路径上的最大边权即可. 代码如下: #inclu ...
- BZOJ 4668: 冷战 并查集启发式合并/LCT
挺好想的,最简单的方法是并查集启发式合并,加暴力跳父亲. 然而,这个代码量比较小,比较好写,所以我写了 LCT,更具挑战性. #include <cstdio> #include < ...
- 【BZOJ】2007: [Noi2010]海拔(平面图转对偶图)
题目 传送门:QWQ 分析 左上角是0,右下角是1.那么大概整张图是由0 1构成的. 那么我们要找到0和1的分界线,值就是最小割. 然后变成求原图最小割. 考虑到此题是平面图,那么就转成对偶图跑最短路 ...
随机推荐
- [转]考虑 PHP 5.0~5.6 各版本兼容性的 cURL 文件上传
FROM : https://segmentfault.com/a/1190000000725185 最近做的一个需求,要通过PHP调用cURL,以multipart/form-data格式上传文件. ...
- U3D 动画帧事件问题
测试版本U3D5.4. 1,为一个模型导入外部动画.为动画剪辑attack在某帧添加event,事件为 public void OnAttackEvent(){},函数体不做任何事情. 结果发现,在动 ...
- Unity 使用快速教程
Unity是微软在CodePlex上的一个开源项目,可用于依赖注入.控制反转,类似Spring,下面是使用示例: 1.先来定义几个接口.类 namespace UnityTest { public i ...
- TRIGGER command denied to user 'root'@'LAPTOP-M7KUFN86' for table 'growtest' | Table 'MyDatabase.tmpIdentity_Invites' doesn't exist
是因为创建表的时候,用户权限不够 NaviCat for Mysql 用这个工具打开MYSQL 在用户 下找到 root@% 这个用户,双击打开 设置服务器权限,最后两个权限勾上就OK 了,需要把MY ...
- Webwork 学习之路【05】请求跳转前 xwork.xml 的读取
个人理解 WebWork 与 Struts2 都是将xml配置文件作为 Controler 跳转的基本依据,WebWork 跳转 Action 前 xml 文件的读取依赖 xwork-1.0.jar, ...
- (转)RSA算法原理(二)
作者: 阮一峰 日期: 2013年7月 4日 上一次,我介绍了一些数论知识. 有了这些知识,我们就可以看懂RSA算法.这是目前地球上最重要的加密算法. 六.密钥生成的步骤 我们通过一个例子,来理解 ...
- css3实践之图片轮播(Transform,Transition和Animation)
楼主喜欢追求视觉上的享受,虽常以牺牲性能无法兼容为代价却也乐此不疲.本文就通过一个个的demo演示来简单了解下css3下的Transform,Transition和Animation. 本文需要实现效 ...
- EXCEL时间日期转换为常规字符显示
当我们做报表导入的时候,我们不得不思考这样一个问题,遇到的数据是时间格式的,而在EXCEL中,时间格式的单元格实际上是以1900年以后来计算的,例如,1900年是闰年(显然可以被4整除),那么1900 ...
- 关于Hibernate的sequence diagram
- ElasticSearch入门系列(一)是什么以及安装和运行
一.是什么 ElasticSearch是一个基于Apache Lucene的开源搜索引擎. Elasticsearch: 分布式的实时文件存储,每个字段都被所用并可被搜索 分布式的实时分析搜索引擎 可 ...