Flume interceptor 使用注意事项
1. 在使用 Regex Filtering Interceptor的时候一个属性是excludeEvents
当它的值为true 的时候,过滤掉匹配到当前正则表达式的一行
当它的值为false的时候,就接受匹配到正则表达式的一行
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be regex_filter |
regex | ”.*” | Regular expression for matching against events |
excludeEvents | false | If true, regex determines events to exclude, otherwise regex determines events to include. |
2. flume interceptors的其它属性
Flume has the capability to modify/drop events in-flight. This is done with the help of interceptors. Interceptors are classes that implement org.apache.flume.interceptor.Interceptor interface. An interceptor can modify or even drop events based on any criteria chosen by the developer of the interceptor. Flume supports chaining of interceptors. This is made possible through by specifying the list of interceptor builder class names in the configuration. Interceptors are specified as a whitespace separated list in the source configuration. The order in which the interceptors are specified is the order in which they are invoked. The list of events returned by one interceptor is passed to the next interceptor in the chain. Interceptors can modify or drop events. If an interceptor needs to drop events, it just does not return that event in the list that it returns. If it is to drop all events, then it simply returns an empty list. Interceptors are named components, here is an example of how they are created through configuration:
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.interceptors = i1 i2
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.HostInterceptor$Builder
a1.sources.r1.interceptors.i1.preserveExisting = false
a1.sources.r1.interceptors.i1.hostHeader = hostname
a1.sources.r1.interceptors.i2.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
a1.sinks.k1.filePrefix = FlumeData.%{CollectorHost}.%Y-%m-%d
a1.sinks.k1.channel = c1
Note that the interceptor builders are passed to the type config parameter. The interceptors are themselves configurable and can be passed configuration values just like they are passed to any other configurable component. In the above example, events are passed to the HostInterceptor first and the events returned by the HostInterceptor are then passed along to the TimestampInterceptor. You can specify either the fully qualified class name (FQCN) or the alias timestamp. If you have multiple collectors writing to the same HDFS path, then you could also use the HostInterceptor.
Timestamp Interceptor
This interceptor inserts into the event headers, the time in millis at which it processes the event. This interceptor inserts a header with key timestamp whose value is the relevant timestamp. This interceptor can preserve an existing timestamp if it is already present in the configuration.
Property Name | Default | Description |
---|---|---|
type | – | The component type name, has to be timestamp or the FQCN |
preserveExisting | false | If the timestamp already exists, should it be preserved - true or false |
Example for agent named a1:
a1.sources = r1
a1.channels = c1
a1.sources.r1.channels = c1
a1.sources.r1.type = seq
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp
Host Interceptor
This interceptor inserts the hostname or IP address of the host that this agent is running on. It inserts a header with key host or a configured key whose value is the hostname or IP address of the host, based on configuration.
Property Name | Default | Description |
---|---|---|
type | – | The component type name, has to be host |
preserveExisting | false | If the host header already exists, should it be preserved - true or false |
useIP | true | Use the IP Address if true, else use hostname. |
hostHeader | host | The header key to be used. |
Example for agent named a1:
a1.sources = r1
a1.channels = c1
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = host
a1.sources.r1.interceptors.i1.hostHeader = hostname
Static Interceptor
Static interceptor allows user to append a static header with static value to all events.
The current implementation does not allow specifying multiple headers at one time. Instead user might chain multiple static interceptors each defining one static header.
Property Name | Default | Description |
---|---|---|
type | – | The component type name, has to be static |
preserveExisting | true | If configured header already exists, should it be preserved - true or false |
key | key | Name of header that should be created |
value | value | Static value that should be created |
Example for agent named a1:
a1.sources = r1
a1.channels = c1
a1.sources.r1.channels = c1
a1.sources.r1.type = seq
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = datacenter
a1.sources.r1.interceptors.i1.value = NEW_YORK
UUID Interceptor
This interceptor sets a universally unique identifier on all events that are intercepted. An example UUID is b5755073-77a9-43c1-8fad-b7a586fc1b97, which represents a 128-bit value.
Consider using UUIDInterceptor to automatically assign a UUID to an event if no application level unique key for the event is available. It can be important to assign UUIDs to events as soon as they enter the Flume network; that is, in the first Flume Source of the flow. This enables subsequent deduplication of events in the face of replication and redelivery in a Flume network that is designed for high availability and high performance. If an application level key is available, this is preferable over an auto-generated UUID because it enables subsequent updates and deletes of event in data stores using said well known application level key.
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder |
headerName | id | The name of the Flume header to modify |
preserveExisting | true | If the UUID header already exists, should it be preserved - true or false |
prefix | “” | The prefix string constant to prepend to each generated UUID |
Morphline Interceptor
This interceptor filters the events through a morphline configuration file that defines a chain of transformation commands that pipe records from one command to another. For example the morphline can ignore certain events or alter or insert certain event headers via regular expression based pattern matching, or it can auto-detect and set a MIME type via Apache Tika on events that are intercepted. For example, this kind of packet sniffing can be used for content based dynamic routing in a Flume topology. MorphlineInterceptor can also help to implement dynamic routing to multiple Apache Solr collections (e.g. for multi-tenancy).
Currently, there is a restriction in that the morphline of an interceptor must not generate more than one output record for each input event. This interceptor is not intended for heavy duty ETL processing - if you need this consider moving ETL processing from the Flume Source to a Flume Sink, e.g. to a MorphlineSolrSink.
Required properties are in bold.
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder |
morphlineFile | – | The relative or absolute path on the local file system to the morphline configuration file. Example: /etc/flume-ng/conf/morphline.conf |
morphlineId | null | Optional name used to identify a morphline if there are multiple morphlines in a morphline config file |
Sample flume.conf file:
a1.sources.avroSrc.interceptors = morphlineinterceptor
a1.sources.avroSrc.interceptors.morphlineinterceptor.type = org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder
a1.sources.avroSrc.interceptors.morphlineinterceptor.morphlineFile = /etc/flume-ng/conf/morphline.conf
a1.sources.avroSrc.interceptors.morphlineinterceptor.morphlineId = morphline1
Search and Replace Interceptor
This interceptor provides simple string-based search-and-replace functionality based on Java regular expressions. Backtracking / group capture is also available. This interceptor uses the same rules as in the Java Matcher.replaceAll() method.
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be search_replace |
searchPattern | – | The pattern to search for and replace. |
replaceString | – | The replacement string. |
charset | UTF-8 | The charset of the event body. Assumed by default to be UTF-8. |
Example configuration:
a1.sources.avroSrc.interceptors = search-replace
a1.sources.avroSrc.interceptors.search-replace.type = search_replace # Remove leading alphanumeric characters in an event body.
a1.sources.avroSrc.interceptors.search-replace.searchPattern = ^[A-Za-z0-9_]+
a1.sources.avroSrc.interceptors.search-replace.replaceString =
Another example:
a1.sources.avroSrc.interceptors = search-replace
a1.sources.avroSrc.interceptors.search-replace.type = search_replace # Use grouping operators to reorder and munge words on a line.
a1.sources.avroSrc.interceptors.search-replace.searchPattern = The quick brown ([a-z]+) jumped over the lazy ([a-z]+)
a1.sources.avroSrc.interceptors.search-replace.replaceString = The hungry $2 ate the careless $1
Regex Filtering Interceptor
This interceptor filters events selectively by interpreting the event body as text and matching the text against a configured regular expression. The supplied regular expression can be used to include events or exclude events.
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be regex_filter |
regex | ”.*” | Regular expression for matching against events |
excludeEvents | false | If true, regex determines events to exclude, otherwise regex determines events to include. |
Regex Extractor Interceptor
This interceptor extracts regex match groups using a specified regular expression and appends the match groups as headers on the event. It also supports pluggable serializers for formatting the match groups before adding them as event headers.
Property Name | Default | Description |
---|---|---|
type | – | The component type name has to be regex_extractor |
regex | – | Regular expression for matching against events |
serializers | – | Space-separated list of serializers for mapping matches to header names and serializing their values. (See example below) Flume provides built-in support for the following serializers: org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer |
serializers.<s1>.type | default | Must be default (org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer), org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer, or the FQCN of a custom class that implements org.apache.flume.interceptor.RegexExtractorInterceptorSerializer |
serializers.<s1>.name | – | |
serializers.* | – | Serializer-specific properties |
The serializers are used to map the matches to a header name and a formatted header value; by default, you only need to specify the header name and the default org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer will be used. This serializer simply maps the matches to the specified header name and passes the value through as it was extracted by the regex. You can plug custom serializer implementations into the extractor using the fully qualified class name (FQCN) to format the matches in anyway you like.
Example 1:
If the Flume event body contained 1:2:3.4foobar5 and the following configuration was used
a1.sources.r1.interceptors.i1.regex = (\\d):(\\d):(\\d)
a1.sources.r1.interceptors.i1.serializers = s1 s2 s3
a1.sources.r1.interceptors.i1.serializers.s1.name = one
a1.sources.r1.interceptors.i1.serializers.s2.name = two
a1.sources.r1.interceptors.i1.serializers.s3.name = three
The extracted event will contain the same body but the following headers will have been added one=>1, two=>2, three=>3
Example 2:
If the Flume event body contained 2012-10-18 18:47:57,614 some log line and the following configuration was used
a1.sources.r1.interceptors.i1.regex = ^(?:\\n)?(\\d\\d\\d\\d-\\d\\d-\\d\\d\\s\\d\\d:\\d\\d)
a1.sources.r1.interceptors.i1.serializers = s1
a1.sources.r1.interceptors.i1.serializers.s1.type = org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer
a1.sources.r1.interceptors.i1.serializers.s1.name = timestamp
a1.sources.r1.interceptors.i1.serializers.s1.pattern = yyyy-MM-dd HH:mm
the extracted event will contain the same body but the following headers will have been added timestamp=>1350611220000
Flume interceptor 使用注意事项的更多相关文章
- Flume NG之Interceptor简介
转载地址:http://www.cnblogs.com/lxf20061900/p/3658172.html 有的时候希望通过Flume将读取的文件再细分存储,比如讲source的数据按照业务类型分开 ...
- Flume 拦截器(interceptor)详解
flume 拦截器(interceptor)1.flume拦截器介绍拦截器是简单的插件式组件,设置在source和channel之间.source接收到的事件event,在写入channel之前,拦截 ...
- Hadoop生态圈-Flume的组件之自定义拦截器(interceptor)
Hadoop生态圈-Flume的组件之自定义拦截器(interceptor) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本篇博客只是举例了一个自定义拦截器的方法,测试字节传输速 ...
- 【翻译】Flume 1.8.0 User Guide(用户指南) Processors
翻译自官网flume1.8用户指南,原文地址:Flume 1.8.0 User Guide 篇幅限制,分为以下5篇: [翻译]Flume 1.8.0 User Guide(用户指南) [翻译]Flum ...
- 一次flume exec source采集日志到kafka因为单条日志数据非常大同步失败的踩坑带来的思考
本次遇到的问题描述,日志采集同步时,当单条日志(日志文件中一行日志)超过2M大小,数据无法采集同步到kafka,分析后,共踩到如下几个坑.1.flume采集时,通过shell+EXEC(tail -F ...
- flume 配置
[root@dtpweb data]#tar -zxvf apache-flume-1.7.0-bin.tar.gz[root@dtpweb conf]# cp flume-env.sh.templa ...
- Flume -- 开源分布式日志收集系统
Flume是Cloudera提供的一个高可用的.高可靠的开源分布式海量日志收集系统,日志数据可以经过Flume流向需要存储终端目的地.这里的日志是一个统称,泛指文件.操作记录等许多数据. 一.Flum ...
- flume+kafka+smart数据接入实施手册
1. 概述 本手册主要介绍了,一个将传统数据接入到Hadoop集群的数据接入方案和实施方法.供数据接入和集群运维人员参考. 1.1. 整体方案 Flume作为日志收集工具,监控一个文件目录或者一 ...
- Flume + HDFS + Hive日志收集系统
最近一段时间,负责公司的产品日志埋点与收集工作,搭建了基于Flume+HDFS+Hive日志搜集系统. 一.日志搜集系统架构: 简单画了一下日志搜集系统的架构图,可以看出,flume承担了agent与 ...
随机推荐
- 数据库的日志数据库(_log.ldf)文件太大,如何压缩
DUMP TRANSACTION TCB WITH NO_LOGBACKUP LOG TCB WITH NO_LOGDBCC SHRINKDATABASE(TCB) 执行这三条语句就可以了,这里的TC ...
- [Android Pro] Normal Permissions
As of API level 23, the following permissions are classified as PROTECTION_NORMAL: ACCESS_LOCATION_E ...
- chrome进入控制台时自动进入断点模式的解决方法
简单粗暴,不知道为什么,去掉那个√就好了
- Innodb之表空间转移
我们可以将数据表转移到其他磁盘,以减弱单个磁盘的IO. 如 1创建一个表空间: 2修改表以使用新的表空间,如果表有大量数据,则会需要一些时间重建:所以会锁表一段时间: Note:会将原有的表空间删除, ...
- IPv6地址介绍
IPv6地址介绍 2008 年 04 月 10 日 1. 认识IPv6地址 IPv4地址是类似 A.B.C.D 的格式,它是32位,用\".\"分成四段,用10进制表示:而IPv6 ...
- NYOJ题目114某种序列
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAHuCAIAAAD83zYaAAAgAElEQVR4nO3dP1LjygIv4LcJ5yyE2A
- 2.1顺序容器-vector
vector 1) * :使用vector必须包含vector头文件.可变长的动态数组,支持随机访问,所有STL算法都可以对vector进行操作. ** :随机根据下标访问某个元素的时间是一个常数 ...
- .net学习笔记---webconfig的读与写
System.ConfigurationManager类用于对配置文件的读取.其具有的成员如下: 一.AppSettings AppSetting是最简单的配置节,读写非常简单. 名称 说明 AppS ...
- execl一个工作薄中有几个个工作表,将这几个个工作表分别保存到不同execl文件中
用宏运行: Sub QEJebel() Dim sh As Worksheet Dim Pa As String Pa = ThisWorkbook.Path For Each ...
- Redis不同数据类型的的数据结构实现
我们知道Redis支持五种数据类型, 分别是字符串.哈希表(map).列表(list).集合(set)和有序集合,和Java的集合框架类似,不同数据类型的数据结构实也是不一样的. >>Re ...