基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution
PMF
A discrete random variable $X$ is said to have a Poisson distribution with parameter $\lambda > 0$, if the probability mass function of $X$ is given by $$f(x; \lambda) = \Pr(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ for $x=0, 1, 2, \cdots$.
Proof:
$$ \begin{align*} \sum_{x=0}^{\infty}f(x; \lambda) &= \sum_{x=0}^{\infty} e^{-\lambda}{\lambda^x\over x!}\\ & = e^{-\lambda}\sum_{x=0}^{\infty}{\lambda^x\over x!}\\ &= e^{-\lambda}\left(1 + \lambda + {\lambda^2 \over 2!}+ {\lambda^3\over 3!}+ \cdots\right)\\ & = e^{-\lambda} \cdot e^{\lambda}\\ & = 1 \end{align*} $$
Mean
The expected value is $$\mu = E[X] = \lambda$$
Proof:
$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xe^{-\lambda}{\lambda^x\over x!}\\ & = \sum_{x=1}^{\infty}e^{-\lambda}{\lambda^x\over (x-1)!}\\ & =\lambda e^{-\lambda}\sum_{x=1}^{\infty}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda e^{-\lambda}\left(1+\lambda + {\lambda^2\over 2!} + {\lambda^3\over 3!}+\cdots\right)\\ & = \lambda e^{-\lambda} e^{\lambda}\\ & = \lambda \end{align*} $$
Variance
The variance is $$\sigma^2 = \mbox{Var}(X) = \lambda$$
Proof:
$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2e^{-\lambda}{\lambda^x\over x!}\\ &= \sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^x\over (x-1)!}\\ &= \lambda\sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda\sum_{x=1}^{\infty}(x-1+1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ &= \lambda\left(\sum_{x=1}^{\infty}(x-1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ &= \lambda\left(\lambda\sum_{x=2}^{\infty}e^{-\lambda}{\lambda^{x-2}\over (x-2)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ & = \lambda(\lambda+1) \end{align*} $$ Hence the variance is $$ \begin{align*} \mbox{Var}(X)& = E\left[X^2\right] - E[X]^2\\ & = \lambda(\lambda + 1) - \lambda^2\\ & = \lambda \end{align*} $$
Examples
1. Let $X$ be Poisson distributed with intensity $\lambda=10$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.
Solution:
The Poisson distribution mass function is $$f(x) = e^{-\lambda}{\lambda^x\over x!},\ x=0, 1, 2, \cdots$$ The expected value is $$\mu= \lambda=10$$ Then the standard deviation is $$\sigma = \sqrt{\lambda} = 3.162278$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\lambda| \geq 2\sqrt{\lambda}\right) &= P\left(X \leq \lambda-2\sqrt{\lambda}\right) + P\left(X \geq \lambda + 2\sqrt{\lambda}\right)\\ & = P(X \leq 3) + P(X \geq 17)\\ & = 0.03737766 \end{align*} $$ R code:
sum(dpois(c(0:3), 10)) + 1 - sum(dpois(c(0:16), 10))
# [1] 0.03737766
Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$
2. In a certain shop, an average of ten customers enter per hour. What is the probability $P$ that at most eight customers enter during a given hour.
Solution:
Recall that the Poisson distribution mass function is $$P(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ and $\lambda=10$. So we have $$ \begin{align*} P(X \leq 8) &= \sum_{x=0}^{8}e^{-10}{10^{x}\over x!}\\ &= 0.3328197 \end{align*} $$ R code:
sum(dpois(c(0:8), 10))
# [1] 0.3328197
ppois(8, 10)
# [1] 0.3328197
3. What is the probability $Q$ that at most 80 customers enter the shop from the previous problem during a day of 10 hours?
Solution:
The number $Y$ of customers during an entire day is the sum of ten independent Poisson distribution with parameter $\lambda=10$. $$Y = X_1 + \cdots + X_{10}$$ Thus $Y$ is also a Poisson distribution with parameter $\lambda = 100$. Thus we have $$ \begin{align*} P(Y \leq 80) &= \sum_{y=0}^{80}e^{-100}{100^{y}\over y!}\\ &= 0.02264918 \end{align*} $$ R code:
sum(dpois(c(0:80), 100))
# [1] 0.02264918
ppois(80, 100)
# [1] 0.02264918
Alternatively, we can use normal approximation (generally when $\lambda > 9$) with $\mu = \lambda = 100$ and $\sigma = \sqrt{\lambda}=10$. $$ \begin{align*} P(Y \leq 80) &= \Phi\left({80.5-100\over 10 }\right)\\ &= \Phi\left({-19.5\over10}\right)\\ &=0.02558806 \end{align*} $$ R code:
pnorm(-19.5/10)
# [1] 0.02558806
4. At the 2006 FIFA World Championship, a total of 64 games were played. The number of goals per game was distributed as follows: 8 games with 0 goals 13 games with 1 goal 18 games with 2 goals 11 games with 3 goals 10 games with 4 goals 2 games with 5 goals 2 games with 6 goals Determine whether the number of goals per game may be assumed to be Poisson distributed.
Solution:
We can use Chi-squared test. The observations are in Table 1.
On the other hand, if this is a Poisson distribution then the parameter should be $$ \begin{align*} \lambda &= \mu\\ & = {0\times8 + 1\times13 +\cdots + 6\times2 \over 8+13+\cdots+2}\\ & = {144\over 64}\\ &=2.25 \end{align*} $$ And the Poisson point probabilities are listed in Table 2.
And hence the expected numbers are listed in Table 3.
Note that we have merged some categories in order to get $E_i \geq 3$. The statistic is $$ \begin{align*} \chi^2 &= \sum{(O-E)^2\over E}\\ &= {(8-6.720)^2 \over 6.720} + \cdots + {(4-4.992)^2 \over 4.992}\\ &= 2.112048 \end{align*} $$ There are six categories and thus the degree of freedom is $6-1 = 5$. The significance probability is 0.8334339. R code:
prob = c(round(dpois(c(0:6), 2.25), 3),
+ 1 - round(sum(dpois(c(0:6), 2.25)), 3))
expect = prob * 64
prob; expect
# [1] 0.105 0.237 0.267 0.200 0.113 0.051 0.019 0.008
# [1] 6.720 15.168 17.088 12.800 7.232 3.264 1.216 0.512
O = c(8, 13, 18, 11, 10, 4)
E = c(expect[1:5], sum(expect[6:8]))
O; E
# [1] 8 13 18 11 10 4
# [1] 6.720 15.168 17.088 12.800 7.232 4.992
chisq = sum((O - E) ^ 2 / E)
1 - pchisq(chisq, 5)
# [1] 0.8334339
The hypothesis is $$H_0: \mbox{Poisson distribution},\ H_1: \mbox{Not Poisson distribution}$$ Since $p = 0.8334339 > 0.05$, so we accept $H_0$. That is, it is reasonable to claim that the number of goals per game is Poisson distributed.
Reference
- Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
- Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 9. ISBN: 978-87-7681-409-0.
基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution的更多相关文章
- 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution
PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...
- 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution
PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...
- 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution
PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...
- 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution
PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...
- 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution
PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- Common Probability Distributions
Common Probability Distributions Probability Distribution A probability distribution describes the p ...
随机推荐
- javascript 位运算
位运算博大精深,本文总结下基本的位运算的概念. 1.整数的二进制码 位操作符用于在最基本的层次上,即按内存中表示数值的位来操作数值.ECMAScript中的所有数值都以IEEE-754 64位格式存储 ...
- 创业这三年¥.NET之尴尬处境
创业这三年#迈出第一步 创业这三年@各种奇遇 之前写的文章有兴趣的大家可以看看. 本来没有打算写这样一篇会遭人拍砖的文章,但是发现大家每天忙于编码,对市场环境..Net生态没有一个真实.多角度的认识, ...
- xml序列化及反序列化.net对象
序列化一个类通常添加[XmlRoot("根节点名字")] 找到要序列化的内容 对要序列化的类添加 [Serializable]属性用于序列化 对于要序列化的字段添加 [XmlEl ...
- 53-whereis 查找文件
查找文件 whereis [options] file 参数 file 是whereis需要查找的文件,这些文件属于原始代码,二进制文件或是帮助文件 选项 -b 只查找二进 ...
- Linux 安装mysql+apache+php
安装mysql 1. yum install mysql mysql-server 2. 修改mysql密码 >use mysql >update user set passwor ...
- js和jQuery的日常
让当前页面显示整个屏幕 - (iframe 从后台跳转到前台的时候容易多层嵌套)$(document).ready(function(){ if(window.top != window.self) ...
- 最完整的Elasticsearch 基础教程
翻译:潘飞(tinylambda@gmail.com) 基础概念 Elasticsearch有几个核心概念.从一开始理解这些概念会对整个学习过程有莫大的帮助. 接近实时(NRT) Ela ...
- iOS开发小技巧--TableView中headerView的循环利用,以及自定义的headerView
一.首先要搞清楚,tableView中有两种headerView,一个是tableHeaderView,另一个是headerView.前者就一个;后者根据session决定个数 headerView的 ...
- ps制作gif图片
本文自学内容来自这里 PS版本是CS6: 制作效果 步骤 1.下载素材 2.打开ps,添加素材 文件->打开->选择所有需要的素材全部打开(如图,已将需要的3个素材全部打开) 3.将素材放 ...
- nutch-2.1导入eclipse+mysql运行
初次接触nutch,记录下来 首先数据库 CREATE DATABASE nutch DEFAULT CHARACTER SET utf8 DEFAULT COLLATE utf8_unicode_c ...