题目链接: 传送门

Prime Land

Time Limit: 1000MS     Memory Limit: 10000K

Description

Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that The sequence
(ekx, ekx-1, ... ,e1, e0)
is considered to be the representation of x in prime base number system.
It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple.
Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''.
Help people in the Prime Land and write a corresponding program.
For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi.

Input

The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

Output

The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

Sample Input

17 1
5 1 2 1
509 1 59 1
0

Sample Output

2 4
3 2
13 1 11 1 7 1 5 1 3 1 2 1

题目大意:

每个样例一行输入,第一个数代表底数第二个数是系数,以此类推,读到换行符结束,问这行样例最后组成的数字的值减一,将其质因数从大到小输出。
很裸的题,跑一边埃氏筛选法筛选出素数,然后再把读入的样例转换为数值后就可以分解了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX = 33000;
bool is_prime[MAX];
int prime[MAX];

int pow(int x,int n)
{
    int res = 1;
    while (n > 0)
    {
        if (n & 1)
        {
            res *= x;
        }
        x *= x;
        n >>= 1;
    }
    return res;
}

int main()
{
    int x,y,maxx,sum = 1,p = 0;
    int cnt[MAX];
    char ch;
    memset(is_prime,true,sizeof(is_prime));
    memset(prime,0,sizeof(prime));
    is_prime[0] = is_prime[1] = false;
    for (int i = 2;i <= MAX;i++)
    {
        if (is_prime[i])
        {
            prime[p++] = i;
            for (int j = 2 * i;j <= MAX;j += i)
            {
                is_prime[j] = false;
            }
        }
    }
    while (1)
    {
        scanf("%d",&x);
        if (x == 0)
            break;
        scanf("%d",&y);
        sum *= pow(x,y);
        ch = getchar();
        if (ch == '\n')
        {
            maxx = 0;
            memset(cnt,0,sizeof(cnt));
            sum -= 1;
            int tmpsum = sum;
            for (int i = 0;i < tmpsum;i++)
            {
                while (sum % prime[i] == 0)
                {
                    cnt[i]++;
                    sum /= prime[i];
                    maxx = max(maxx,i);
                    //cout << sum << endl;
                }
                if (sum == 0 || sum == 1)
                    break;
            }
            //cout << "OK" << endl;
            bool first = true;
            for (int i = maxx;i >= 0;i--)
            {
                if (cnt[i])
                {
                    first?printf("%d %d",prime[i],cnt[i]):printf(" %d %d",prime[i],cnt[i]);
                    first = false;
                }
            }
            printf("\n");
            sum = 1;
        }
    }
    return 0;
}

POJ 1365 Prime Land(数论)的更多相关文章

  1. [POJ 1365] Prime Land

    Prime Land Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3211   Accepted: 1473 Descri ...

  2. POJ 1365 Prime Land(整数拆分)

    题意:感觉题意不太好懂,题目并不难,就是给一些p和e,p是素数,e是指数,然后把这个数求出来,设为x,然后让我们逆过程输出x-1的素数拆分形式,形式与输入保持一致. 思路:素数打表以后正常拆分即可. ...

  3. 筛选法 || POJ 1356 Prime Land

    英文题读不懂题==质数幂的形式给你一个数 把它减一再用质数幂的形式表示出来 *解法:质数从小到大模拟除一遍,输入有点别扭 #include <iostream> #include < ...

  4. [暑假集训--数论]poj1365 Prime Land

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integ ...

  5. 数学--数论--POJ1365——Prime Land

    Description Everybody in the Prime Land is using a prime base number system. In this system, each po ...

  6. 双向广搜 POJ 3126 Prime Path

      POJ 3126  Prime Path Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16204   Accepted ...

  7. poj 2689 Prime Distance(大区间素数)

    题目链接:poj 2689 Prime Distance 题意: 给你一个很大的区间(区间差不超过100w),让你找出这个区间的相邻最大和最小的两对素数 题解: 正向去找这个区间的素数会超时,我们考虑 ...

  8. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  9. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

随机推荐

  1. lecture2-NN结构的主要类型的概述和感知机

    Hinton课程第二课 一.NN结构的主要类型的概述 这里的结构就是连接在一起的神经元.目前来说,在实际应用中最常见的NN就是前向NN,他是将数据传递给输入单元,通过隐藏层最后到输出层的单元:一个更有 ...

  2. mac下CornerstoneSVN出错 Description : The working copy is locked due to a previous error

    使用CornerStone工具update最新SVN代码报错:The working copy is locked due to a previous error,不仅无法上传,也无法更新,错误提示被 ...

  3. React Native 在现有项目中的探路

    移动开发中,native开发性能和效果上无疑是最好的. 但是在众多的情况下,native开发并不是最优的选择.当需求经常改动的时候,当预算有限的时候,当deadline很近的时候,native开发的成 ...

  4. 三言两语聊Python模块–文档测试模块doctest

    doctest是属于测试模块里的一种,对注释文档里的示例进行检测. 给出一个例子: splitter.pydef split(line, types=None, delimiter=None): &q ...

  5. 关于拉格朗日乘子法和KKT条件

    解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42 ...

  6. 检测IE浏览器方法

    var isIE=function(){ var b=document.createElement("b"); b.innerHTML="<!--[if IE]&g ...

  7. python file 文件读写

    python 文本对象 继承自C的stdio包 打开 可以用内置的open()函数创建 with open("hello.txt") as f: for line in f: pr ...

  8. poj2955括号匹配 区间DP

    Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5424   Accepted: 2909 Descript ...

  9. lucene-查询query->TermQuery按词条搜索

     TermQuery是最简单.也是最常用的Query.TermQuery可以理解成为“词条搜索”,在搜索引擎中最基本的搜索就是在索引中搜索某一词条,而TermQuery就是用来完成这项工作的. 在Lu ...

  10. Echarts-画堆积柱状图

    导入echarts包 <script src='../scripts/libraries/echarts/echarts-all.js'></script> 堆积图js $(f ...