Problem F

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other)
Total Submission(s) : 41   Accepted Submission(s) : 8
Problem Description
You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

 
Input
The input consists of multiple data sets. Each data set is given in the following format.

n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

 
Output
For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

 
Sample Input
3 10.000 10.000 50.000 10.000 40.000 10.000 50.000 10.000 40.000 40.000 50.000 10.000 2 30.000 30.000 30.000 20.000 40.000 40.000 40.000 20.000 5 5.729 15.143 3.996 25.837 6.013 14.372 4.818 10.671 80.115 63.292 84.477 15.120 64.095 80.924 70.029 14.881 39.472 85.116 71.369 5.553 0
 
Sample Output
20.000 0.000 73.834
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
struct node
{
int x;
int y;
double dis;
}a[101];
int pre[101];
int T;
double sum;
int cmp(node a, node b)
{
return a.dis < b.dis;
}
double x[101],y[101],z[101],r[101];
double dist(double x1,double y1,double z1,double r1,double x2,double y2,double z2,double r2)
{
double q =sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2))-r1-r2;
if(q<=0) return 0.0;// ru he gai jin
else return q;
}
int find(int x)
{
return x==pre[x] ? x:pre[x]=find(pre[x]);
}
void init()
{
for(int i=1;i<=T;i++)
pre[i] =i;
}
bool join(int x, int y)
{
int f1=find(x);
int f2= find(y);
if(f1!=f2)
{
pre[f1] = f2;
return true;
}
return false;
} int main()
{
while(scanf("%d",&T),T)
{
init();
for(int i=1;i<=T;i++)
{
cin>>x[i]>>y[i]>>z[i]>>r[i];
}
int k = 1;
for(int i=1;i<T;i++)
{
for(int j=i+1;j<=T;j++)
{
a[k].x = i;
a[k].y = j;
a[k++].dis = dist(x[i],y[i],z[i],r[i],x[j],y[j],z[j],r[j]);
}
}
sort(a+1,a+k+1,cmp);
sum =0;
for(int i=1;i<k;i++)
{
if(join(a[i].x,a[i].y))
{
sum+=a[i].dis;
}
}
printf("%.3f\n",sum);
}
return 0;
}

F-并查集的更多相关文章

  1. Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集

    题目链接: 题目 F. Polycarp and Hay time limit per test: 4 seconds memory limit per test: 512 megabytes inp ...

  2. F - True Liars - poj1417(背包+并查集)

    题意:有这么一群人,一群好人,和一群坏人,好人永远会说实话,坏人永远说假话,现在给你一组对话和好人与坏人的数目P1, P2. 数据里面的no是A说B是坏人, yes代表A说B是好人,就是这样,问题能不 ...

  3. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  4. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  5. GYM 101173 F.Free Figurines(贪心||并查集)

    原题链接 题意:俄罗斯套娃,给出一个初始状态和终止状态,问至少需要多少步操作才能实现状态转化 贪心做法如果完全拆掉再重装,答案是p[i]和q[i]中不为0的值的个数.现在要求寻找最小步数,显然要减去一 ...

  6. F - Number of Connected Components UVALive - 7638 (并查集 + 思维)

    题目链接:https://cn.vjudge.net/contest/275589#problem/F 题目大意:就是给你n个数,如果说两个数之间的gcd!=1,那么就将这两个点连起来,问你最终这些点 ...

  7. 【CodeForces】915 F. Imbalance Value of a Tree 并查集

    [题目]F. Imbalance Value of a Tree [题意]给定n个点的带点权树,求所有路径极差的和.n,ai<=10^6 [算法]并查集 [题解]先计算最大值的和,按点权从小到大 ...

  8. Codeforces Round #346 (Div. 2) F. Polycarp and Hay 并查集 bfs

    F. Polycarp and Hay 题目连接: http://www.codeforces.com/contest/659/problem/F Description The farmer Pol ...

  9. Codeforces 1131 F. Asya And Kittens-双向链表(模拟或者STL list)+并查集(或者STL list的splice()函数)-对不起,我太菜了。。。 (Codeforces Round #541 (Div. 2))

    F. Asya And Kittens time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  10. [Codeforces 1027 F] Session in BSU [并查集维护二分图匹配问题]

    题面 传送门 思路 真是一道神奇的题目呢 题目本身可以转化为二分图匹配问题,要求右半部分选择的点的最大编号最小的一组完美匹配 注意到这里左边半部分有一个性质:每个点恰好连出两条边到右半部分 那么我们可 ...

随机推荐

  1. Linux文件(区域)锁函数 -- open()、fcntl()

    一.什么是文件锁定 对于锁这个字,大家一定不会陌生,因为我们生活中就存在着大量的锁,它们各个方面发挥着它的作用,现在世界中的锁的功能都可归结为一句话,就是阻止某些人做某些事,例如,门锁就是阻止除了屋主 ...

  2. .NET导入导出Excel方法总结

    最近,应项目的需求,需要实现Excel的导入导出功能,对于Web架构的Excel导入导出功能,比较传统的实现方式是: 1)导入Excel:将Excel文件上传到服务器的某一文件夹下,然后在服务端完成E ...

  3. MySQL SQL Mode及相关问题

    MySQL可以运行于不同的SQLMode下,Mode定义了MySQL应支持的SQL语法.数据校验等. 一.Mode会影响到日期类型.字符串类型等的插入操作.其中多种模式影响了对某些特殊字符如何理解的问 ...

  4. 【DevOps】DevOps成功的八大炫酷工具

    为自动化和分析所设计的软件及服务正加速devops改革的步伐,本文为你盘点了Devops成功的八大炫酷工具 Devops凭借其连接弥合开发与运营团队的能力正在各个行业呈现席卷之势.开发人员和运营人员历 ...

  5. java9

    1:StringBuffer(掌握) (1)用字符串做拼接,比较耗时并且也耗内存,而这种拼接操作又是比较常见的,为了解决这个问题,Java就提供了 一个字符串缓冲区类.StringBuffer供我们使 ...

  6. 总是有一个程序的bug没找到

     算法训练 Lift and Throw   时间限制:3.0s   内存限制:256.0MB      问题描述 给定一条标有整点(1, 2, 3, ...)的射线. 定义两个点之间的距离为其下标之 ...

  7. 伪随机数(线性同余法)C语言

    /**Keil Lib*2015.6.12*Pass*by lort*/uint32 Srandx ; uint32 SrandK = 1103515245;//0x41C64E6D;uint32 S ...

  8. R平方

    参考其他网页 通常R2越大越好,但看到亦在后面标上P值,这两者之间有何联系? R2和p值没有必然联系.就像你做线性分析和(单因素或多因素)方差分析一样,若A和K线性相关,也有可能A对K么有显著性影响一 ...

  9. poj 1651 Multiplication Puzzle

    题目链接:http://poj.org/problem?id=1651 思路:除了头尾两个数不能取之外,要求把所有的数取完,每取一个数都要花费这个数与相邻两个数乘积的代价,需要这个代价是最小的 用dp ...

  10. 使用poi读取xlsx中的数据

    excel中的内容见下图: 详细代码: package dataprovider; import java.io.FileInputStream; import java.io.InputStream ...