python 安装nltk,使用(英文分词处理,词干化等)(Green VPN)
安装pip命令之后:
sudo pip install -U pyyaml nltk
import nltk nltk.download()
等待ing
目前访问不了,故使用Green VPN
http://www.evergreenvpn.com/ubuntu-pptp-vpn-setting/
nltk使用
http://www.cnblogs.com/yuxc/archive/2011/08/29/2157415.html
http://blog.csdn.net/huyoo/article/details/12188573
http://www.52nlp.cn/tag/nltk
1.空格进行英文分词.split(python自带)
>>> slower 'we all like the book' >>> ssplit = slower.split() >>> ssplit ['we', 'all', 'like', 'the', 'book'] >>>
或
>>> import nltk >>> s = u"我们都Like the book" >>> m = [word for word in nltk.tokenize.word_tokenize(s)] >>> for word in m: ... print word ... 我们都Like the book
或
>>> tokens = nltk.word_tokenize(s)
>>> tokens
[u'\u6211\u4eec\u90fdLike', u'the', u'book']
>>> for word in tokens
File "<stdin>", line 1
for word in tokens
^
SyntaxError: invalid syntax
>>> for word in tokens:
... print word
...
我们都Like
the
book
2.词性标注
>>> tagged = nltk.pos_tag(tokens) >>> for word in tagged: ... print word ... (u'\u6211\u4eec\u90fdLike', 'IN') (u'the', 'DT') (u'book', 'NN') >>>
3.句法分析
>>> entities= nltk.chunk.ne_chunk(tagged)
>>> entities
Tree('S', [(u'\u6211\u4eec\u90fdLike', 'IN'), (u'the', 'DT'), (u'book', 'NN')])
>>>
---------------------------------------------------------------------------------------------------------------------------------------------------------
4.转换为小写(Python自带)
>>> s 'We all like the book' >>> slower = s.lower() >>> slower 'we all like the book' >>>
5.空格进行英文分词.split(python自带)
>>> slower 'we all like the book' >>> ssplit = slower.split() >>> ssplit ['we', 'all', 'like', 'the', 'book'] >>>
6.标号与单词分离
>>> s 'we all like the book,it\xe2\x80\x98s so interesting.' >>> s = 'we all like the book, it is so interesting.' >>> wordtoken = nltk.tokenize.word_tokenize(s) >>> wordtoken ['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.'] >>> wordtoken = nltk.word_tokenize(s) >>> wordtoken ['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.'] >>> wordsplit = s.split() >>> wordsplit ['we', 'all', 'like', 'the', 'book,', 'it', 'is', 'so', 'interesting.'] >>>
7.去停用词(nltk自带127个英文停用词)
>>> wordEngStop = nltk.corpus.stopwords.words('english')
>>> wordEngStop
[u'i', u'me', u'my', u'myself', u'we', u'our', u'ours', u'ourselves', u'you', u'your', u'yours', u'yourself', u'yourselves', u'he', u'him', u'his', u'himself', u'she', u'her', u'hers', u'herself', u'it', u'its', u'itself', u'they', u'them', u'their', u'theirs', u'themselves', u'what', u'which', u'who', u'whom', u'this', u'that', u'these', u'those', u'am', u'is', u'are', u'was', u'were', u'be', u'been', u'being', u'have', u'has', u'had', u'having', u'do', u'does', u'did', u'doing', u'a', u'an', u'the', u'and', u'but', u'if', u'or', u'because', u'as', u'until', u'while', u'of', u'at', u'by', u'for', u'with', u'about', u'against', u'between', u'into', u'through', u'during', u'before', u'after', u'above', u'below', u'to', u'from', u'up', u'down', u'in', u'out', u'on', u'off', u'over', u'under', u'again', u'further', u'then', u'once', u'here', u'there', u'when', u'where', u'why', u'how', u'all', u'any', u'both', u'each', u'few', u'more', u'most', u'other', u'some', u'such', u'no', u'nor', u'not', u'only', u'own', u'same', u'so', u'than', u'too', u'very', u's', u't', u'can', u'will', u'just', u'don', u'should', u'now']
>>> len(wordEngStop)
127
>>>
>>> len(wordEngStop) 127 >>> s 'we all like the book, it is so interesting.' >>> wordtoken ['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.'] >>> for word in wordtoken: ... if not word in wordEngStop: ... print word ... like book , interesting . >>>
8.去标点符号
>>> english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '!', '@', '#', '%', '$', '*']
>>> wordtoken
['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.']
>>> for word in wordtoken:
... if not word in english_punctuations:
... print word
...
we
all
like
the
book
it
is
so
interesting
>>>
9.词干化
“我们对这些英文单词词干化(Stemming),NLTK提供了好几个相关工具接口可供选择,具体参考这个页面: http://nltk.org/api/nltk.stem.html , 可选的工具包括Lancaster Stemmer, Porter Stemmer等知名的英文Stemmer。这里我们使用LancasterStemmer:” 来自:我爱自然语言处理 http://www.52nlp.cn/%E5%A6%82%E4%BD%95%E8%AE%A1%E7%AE%97%E4%B8%A4%E4%B8%AA%E6%96%87%E6%A1%A3%E7%9A%84%E7%9B%B8%E4%BC%BC%E5%BA%A6%E4%B8%89
http://lutaf.com/212.htm 词干化的主流方法
http://blog.sina.com.cn/s/blog_6d65717d0100z4hu.html
>>> from nltk.stem.lancaster import LancasterStemmer >>> st = LancasterStemmer() >>> wordtoken ['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.'] >>> st.stem(wordtoken) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/dist-packages/nltk/stem/lancaster.py", line 195, in stem AttributeError: 'list' object has no attribute 'lower' >>> for word in wordtoken: ... print st.stem(word) ... we al lik the book , it is so interest . >>>
两者各有优缺点
>>> from nltk.stem import PorterStemmer
>>> wordtoken
['we', 'all', 'like', 'the', 'book', ',', 'it', 'is', 'so', 'interesting', '.']
>>> PorterStemmer().stem(wordtoken)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/nltk/stem/porter.py", line 632, in stem
AttributeError: 'list' object has no attribute 'lower'
>>> PorterStemmer().stem('all')
u'all'
>>> for word in wordtoken:
... print PorterStemmer().stem(word)
...
we
all
like
the
book
,
it
is
so
interest
.
>>> PorterStemmer().stem("better")
u'better'
>>> PorterStemmer().stem("supplies")
u'suppli'
>>> st.stem('supplies')
u'supply'
>>>
# -*- coding:utf8 -*-
import nltk
import os
wordEngStop = nltk.corpus.stopwords.words('english')
english_punctuations = [',', '.', ':', ';', '?', '(', ')', '[', ']', '!', '@', '#', '%', '$', '*','=','abstract=', '{', '}']
porterStem=nltk.stem.PorterStemmer()
lancasterStem=nltk.stem.lancaster.LancasterStemmer()
fin = open('/home/xdj/myOutput.txt', 'r')
fout = open('/home/xdj/myOutputLancasterStemmer.txt','w')
for eachLine in fin:
eachLine = eachLine.lower().decode('utf-8', 'ignore') #小写
tokens = nltk.word_tokenize(eachLine) #分词(与标点分开)
wordLine = ''
for word in tokens:
if not word in english_punctuations: #去标点
if not word in wordEngStop: #去停用词
#word = porterStem.stem(word)
word = lancasterStem.stem(word)
wordLine+=word+' '
fout.write(wordLine.encode('utf-8')+'\n')
fin.close()
fout.close()
python 安装nltk,使用(英文分词处理,词干化等)(Green VPN)的更多相关文章
- python安装Jieba中文分词组件并测试
python安装Jieba中文分词组件 1.下载http://pypi.python.org/pypi/jieba/ 2.解压到解压到python目录下: 3.“win+R”进入cmd:依次输入如下代 ...
- python中nltk的下载安装方式
首先去http://nltk.org/install.html下载相关的安装程序,然后 在cmd窗口中,进入到python的文件夹内的 Scripts内,运行easy_install pip 安装Py ...
- 转:python的nltk中文使用和学习资料汇总帮你入门提高
python的nltk中文使用和学习资料汇总帮你入门提高 转:http://blog.csdn.net/huyoo/article/details/12188573 nltk的安装 nltk初步使用入 ...
- 【python】NLTK好文
From:http://m.blog.csdn.net/blog/huyoo/12188573 nltk是一个python工具包, 用来处理和自然语言处理相关的东西. 包括分词(tokenize), ...
- linux环境下安装sphinx中文支持分词搜索(coreseek+mmseg)
linux环境下安装sphinx中文支持分词搜索(coreseek+mmseg) 2013-11-10 16:51:14 分类: 系统运维 为什么要写这篇文章? 答:通过常规的三大步(./confi ...
- 探索 Python、机器学习和 NLTK 库 开发一个应用程序,使用 Python、NLTK 和机器学习对 RSS 提要进行分类
挑战:使用机器学习对 RSS 提要进行分类 最近,我接到一项任务,要求为客户创建一个 RSS 提要分类子系统.目标是读取几十个甚至几百个 RSS 提要,将它们的许多文章自动分类到几十个预定义的主题领域 ...
- win安装NLTK出现的问题
一.今天学习Python自然语言处理(NLP processing) 需要安装自然语言工具包NLTK Natural Language Toolkit 按照教程在官网https://pypi.pyth ...
- Python安装、配置图文详解(转载)
Python安装.配置图文详解 目录: 一. Python简介 二. 安装python 1. 在windows下安装 2. 在Linux下安装 三. 在windows下配置python集成开发环境(I ...
- 【和我一起学python吧】Python安装、配置图文详解
Python安装.配置图文详解 目录: 一. Python简介 二. 安装python 1. 在windows下安装 2. 在Linux下安装 三. 在windows下配置python集成开发环境( ...
随机推荐
- Windows下图文详解PHP三种运行方式(php_mod、cgi、fastcgi)
PHP能不能成功的在Apache服务器上运行,就看我们如何去配置PHP的运行方式.PHP运行目前为止主要有三种方式: a.以模块加载的方式运行,初学者可能不容易理解,其实就是将PHP集成到Apache ...
- PHP判断文件或者目录是否可写
在PHP中,可用is_writable()函数来判断一个 文件/目录 是否可写,详情如下: 参考 is_writable (PHP 4, PHP 5) is_writable — 判断给定的文件名是否 ...
- 父类方法返回子类实例:PHP延迟静态绑定
案例分析 先前的PHP项目中,看到类似于以下的一段代码: <?php class DBHandler { public function get() { } } class MySQLHandl ...
- C/C++的开发环境安装
sudo apt-get install gcc sudo apt-get install g++ sudo apt-get install cmake sudo apt-get install ma ...
- T-SQL实用查询之常用SQL语句
删除数据库所有的表: declare @sql varchar() begin SELECT @sql='drop table ' + name FROM sysobjects WHERE (type ...
- 提高MYSQL百万条数据的查询速度
提高MYSQL百万条数据的查询速度 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 nul ...
- Keepalived日志
默认日志存放在系统日志:/var/log/messages下 [root@lb01 /]# tail -f /var/log/messages Oct :: lb01 Keepalived_vrrp[ ...
- Servlet 之 GenericServlet
我们都知道javaweb中servlet的三大组件 servlet filter listener 实现动态资源的 是可以继承 Servlet接口,或者集成GenericServlet .Http ...
- EL操作 web 对象的常用方法
11个常见的web对象 pageScope :获得pageContext对象中存的数据 requestScope :获得request对象中存的数据 sessionScope :获得session对象 ...
- C++库(Google Breakpad)
Google Breakpad是什么? 一个开源的多平台崩溃报告系统. Google breakpad是一个非常实用的跨平台的崩溃转储和分析模块,它支持Windows,Linux和Mac和Solari ...