题目链接:https://www.luogu.org/problem/P1144

其实这道题目是最短路的变形题,因为数据范围 \(N \le 10^6, M \le 2 \times 10^6\) ,所以直接用Dijkstra算法是不行的,可以使用 Dijkstra+堆优化 或者 SPFA算法来实现。

我这里使用 SPFA算法 来实现 (不会Dijkstra堆优化囧)

这道题目因为需要计数,所以需要在dist数组基础上再开一个cnt数组,其含义如下:

  • \(dist[u]\) :起点 \(1\) 到节点 \(u\) 的最短距离;
  • \(cnt[u]\) :起点 \(1\) 到节点 \(u\) 的最短路径长度。

然后队列扩展的时候:

  • 如果 \(dist[v] \gt dist[u]+1\) ,则更新 \(dist[v] = dist[u] + 1\) ,同时置 \(cnt[v] = cnt[u]\) ;
  • 如果 \(dist[v] = dist[u]+1\) ,则 \(cnt[v] += cnt[u]\)

这样就可以实现最短路计数(Dijkstra同理)。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000010;
const long long INF = (1LL<<60);
const long long MOD = 100003LL;
vector<int> g[maxn];
queue<int> que;
int n, m, x, y;
long long dist[maxn], cnt[maxn];
bool inq[maxn];
void spfa() {
dist[1] = 0;
for (int i = 2; i <= n; i ++) dist[i] = -1;
cnt[1] = 1;
que.push(1);
while (!que.empty()) {
int u = que.front();
que.pop();
inq[u] = false;
int sz = g[u].size();
for (int i = 0; i < sz; i ++) {
int v = g[u][i];
if (dist[v] == -1 || dist[v] >= dist[u] + 1) {
if (dist[v] == -1 || dist[v] > dist[u] + 1) {
dist[v] = dist[u] + 1;
cnt[v] = cnt[u];
}
else {
cnt[v] = (cnt[v] + cnt[u]) % MOD;
}
if (!inq[v]) {
que.push(v);
inq[v] = true;
}
}
}
}
}
int main() {
scanf("%d%d", &n, &m);
while (m --) {
scanf("%d%d", &x, &y);
g[x].push_back(y);
g[y].push_back(x);
}
spfa();
for (int i = 1; i <= n; i ++)
printf("%lld\n", cnt[i]);
return 0;
}

作者:zifeiy

P1144 最短路计数 题解 最短路应用题的更多相关文章

  1. 洛谷 P1144 最短路计数 题解

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...

  2. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  3. Luogu P1144 最短路计数 【最短路】 By cellur925

    题目传送门 常规的最短路计数问题:注意有重边(重边不用理,看样例),自环(读入时过滤). 另外这个无向图没有权,其实可以直接bfs做,但考虑到以后带权的情况,按spfa走了. 水题被卡了三次(嘤嘤嘤 ...

  4. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  5. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  6. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  7. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

  8. 解题报告:luogu P1144 最短路计数

    题目链接:P1144 最短路计数 很简单的一道\(dfs\),然而我又跑了一遍\(dij\)和排序,时间复杂度是\(O(nlog n)\) 注意:\(1\).搜索时向\(dis[j]=dis[cur] ...

  9. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

随机推荐

  1. jsp必填项加红色星号

    <th><font color=red>*</font>文字:</th>

  2. day18 15.自定义连接池

    我们写的是连接池吗?Connection对象绝对不能关.现在写的玩意不是连接池.因为现在讲的是JDBC,连接池也是JDBC里面的,人家那是SUN公司定义的标准.标准,你那不是标准.既然是标准,你做连接 ...

  3. 【洛谷】【USACO】P1118 数字三角形

    题目描述 FJ and his cows enjoy playing a mental game. They write down the numbers from 1 to N (1 <= N ...

  4. 使用DIV+CSS布局网站的优点和缺陷

    随着WEB2.0标准化设计理念的普及,国内很多大型门户网站已经纷纷采用DIV+CSS制作方法,从实际应用情况来看,此种方法绝对好于表格制作页面的方法. 如今大部分网站仍然采用表格嵌套内容的方式来制作网 ...

  5. python学习笔记10--协程、IO、IO多路复用

    本节内容 一.协程 1.1.协程概念 1.2.greenlet 1.3.Gevent 1.4.协程之爬虫 1.5.协程之socket 二.论事件驱动与异步IO 三.IO 3.1.概念说明 3.2.IO ...

  6. 2017年浙工大迎新赛热身赛 A 毕业设计选题 【结构体排序】

    时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 65536K,其他语言131072K64bit IO Format: %lld 题目描述 又到了一年一度,大四老学长们毕业设计选题的时候, ...

  7. vue-cli3 搭建的前端项目基础模板

    基于 vue-cli3 搭建的前端模板,fork 或 clone 本仓库,即可搭建完成一个新项目的基础模板,源码地址,欢迎 star 或 fork 特性 CSS 预编译语言:less Ajax: ax ...

  8. NOIP模拟 17.8.16

    NOIP模拟17.8.16 A 债务文件名 输入文件 输出文件 时间限制 空间限制debt.pas/c/cpp debt.in debt.out 1s 128MB[题目描述]小 G 有一群好朋友,他们 ...

  9. BOT建设经营转让,PPP公私合作

    PPP.BOT两种模式有什么区别? BOT模式(build-operate-transfer),由投资方建设并专营一定期限最后移交政府的方式:PPP模式(public-private-partners ...

  10. Bootstrap —— tab切换

    tab切换 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...