题目描述

欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:

Start:25 7

Stan:11 7

Ollie:4 7

Stan:4 3

Ollie:1 3

Stan:1 0

Stan赢得了游戏的胜利。

现在,假设他们完美地操作,谁会取得胜利呢?

输入输出格式

输入格式:

第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)

输出格式:

对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”

输入输出样例

输入样例#1:

2

25 7

24 15

输出样例#1:

Stan wins

Ollie wins

解题思路

自己瞎yy了一下,假如我这次取可以取很多次,那么我就可以选择顶到头或者让对方顶到头,所以这种情况一定是必胜的情况,也就是n>=2*m ,剩下情况没得选择就继续,时间复杂度log n

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
typedef long long LL; LL n,m;
int T,flag; int main(){
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&n,&m);
flag=0;
while(n>0 && m>0){
flag^=1;
if(n<m) swap(n,m);
if(n>=2*m) break;
n-=m;
}
if(flag) cout<<"Stan wins"<<endl;
else cout<<"Ollie wins"<<endl;
}
return 0;
}

LUOGU P1290 欧几里德的游戏的更多相关文章

  1. P1290 欧几里德的游戏

    P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...

  2. 洛谷——P1290 欧几里德的游戏

    P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的 ...

  3. 洛谷P1290 欧几里德的游戏

    题目:https://www.luogu.org/problemnew/show/P1290 只要出现n>=2*m,就可以每次把较大的数控制在较小的数的一倍与二倍之间,则控制了对方的走法: 每次 ...

  4. P1290 欧几里德的游戏(洛谷)

    欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数 M 和 N,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然, ...

  5. P1290 【欧几里德的游戏】

    P1290 [欧几里德的游戏] 真·做题全凭感性 从题目中很容易看出 这是一道\(Gcd\)的题 同时又结合了一些略略的博弈论(丢下锅跑真爽 我们看,辗转相减的\(a,b\)一共只有两种情况 \(a- ...

  6. Luogu P1290 欧几里得的游戏/UVA10368 Euclid's Game

    Luogu P1290 欧几里得的游戏/UVA10368 Euclid's Game 对于博弈论的题目没接触过多少,而这道又是比较经典的SG博弈,所以就只能自己来推关系-- 假设我们有两个数$m,n$ ...

  7. [Luogu 1640] SCOI2010 连续攻击游戏

    [Luogu 1640] SCOI2010 连续攻击游戏 DP太恶心,回来二分图这边放松一下心智. 这个建图真的是难以想到. 因为要递增啊,属性值放x部,装备放y部,对应连边跑Hungary就好了. ...

  8. [Luogu 1312] noip11 Mayan游戏

    [Luogu 1312] noip11 Mayan游戏 Problem: Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  9. 题解 洛谷P1290 【欧几里德的游戏】

    这题没必要那么麻烦,只需要推理一下即可: 假设我们有两个数\(x,y\),先把\(x\)设为较大值,\(y\)设为较小值.现在分成三种情况: \(1\).若两数为倍数关系,操作的一方赢. \(2\). ...

随机推荐

  1. 服务器访问数据库表mysql

    服务器的MySQL配置就不说了,直接说一些用到的基础命令 登陆 show databases; use 数据库: show tables; 执行sql即可: 一定要有分号 select * from ...

  2. 阿里云香港ECS搭建Shadowscoks

    注(转https://yijingping.github.io/2016/11/29/fanqiang.html) 1 为什么FQ 作为一个技术人员, 最常用的就是Google.StackOverfl ...

  3. [NOIP2019模拟赛]LuoguP4261白金元首与克劳德斯

    题目描述 给出坐标系中n个矩形,类型1的矩形每单位时间向x轴正方向移动1个单位,类型2的矩形向y轴正方向,初始矩形不重叠,一个点被矩形覆盖当且仅当它在矩形内部(不含边界),求$(-\infty ,+\ ...

  4. 多项式模板&题目整理

    注:多项式的题目,数组应开:N的最近2的整数次幂的4倍. 多项式乘法 FFT模板 时间复杂度\(O(n\log n)\). 模板: void FFT(Z *a,int x,int K){ static ...

  5. springboot中pageHelper插件 list设置不进去 为null

    分页pageHelper中list放不进去值  为null,可能的解决方案如下: 1. 注意代码顺序,PageHelper.startPage(pageNumber,pageSize)要放在查询Lis ...

  6. 解决Mybatis的invalid bound statement (not found)异常

    使用Maven构建SSM时, 需要在pom.xml中配置一些信息, 否则mapper.xml就无法被扫描到, 程序就会抛invalid bound statement (not found)异常 解决 ...

  7. limit方法也是模型类的连贯操作方法之一

    limit方法也是模型类的连贯操作方法之一,主要用于指定查询和操作的数量,特别在分页查询的时候使用较多.ThinkPHP的limit方法可以兼容所有的数据库驱动类的. 限制结果数量 例如获取满足要求的 ...

  8. 容斥原理——hdu2204dfs深搜

    /* 枚举素数幂p 然后求k^p<=n 的 k的个数 因为 k^p1*p2==k^p2*p1,所以这两种情况是多算的,所以要进行容斥 减去两个质数幂相乘的,再加上三个质数幂相乘的 因为2*3*5 ...

  9. springboot让内置tomcat失效

    一.POM(去除内嵌tomcat后,需要添加servlet依赖) <dependency> <groupId>org.springframework.boot</grou ...

  10. kafka集群搭建文档

    kafka集群搭建文档 一. 下载解压 从官网下载Kafka,下载地址http://kafka.apache.org/downloads.html 注意这里最好下载scala2.10版本的kafka, ...