FFT最新卡常研究
指针优化并没有什么卵用,反而增大了代码的不可读性。
除了本来的循环顺序优化寻址,在预处理单位复数根时,可以连续存储,以增快寻址速度,细节见代码。
代码给出的是FFT,NTT是一样的。
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define db double
#define pp printf
#define hh pp("\n")
using namespace std;
struct P {
db x, y;
P(db _x = 0, db _y = 0) { x = _x, y = _y;}
};
P operator + (P a, P b) { return P(a.x + b.x, a.y + b.y);}
P operator - (P a, P b) { return P(a.x - b.x, a.y - b.y);}
P operator * (P a, P b) { return P(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
const db pi = acos(-1);
const int nm = 1 << 21;
int r[nm]; P a[nm], b[nm], W[nm];
void dft(P *a, int n, int f) {
ff(i, 0, n) {
r[i] = r[i / 2] / 2 + (i & 1) * (n / 2);
if(i < r[i]) swap(a[i], a[r[i]]);
} P b;
for(int i = 1; i < n; i *= 2) for(int j = 0; j < n; j += 2 * i)
ff(k, 0, i) b = W[i + k] * a[i + j + k], a[i + j + k] = a[j + k] - b, a[j + k] = a[j + k] + b;
if(f == -1) {
reverse(a + 1, a + n);
ff(i, 0, n) a[i].x /= n;
}
}
void fft(P *a, P *b, int n) {
dft(a, n, 1); dft(b, n, 1);
ff(i, 0, n) a[i] = a[i] * b[i];
dft(a, n, -1);
}
int main() {
for(int i = 1; i < nm; i *= 2) ff(j, 0, i)
W[i + j] = P(cos(pi * j / i), sin(pi * j / i));
ff(i, 0, 1 << 20) a[i].x = b[i].x = i;
fft(a, b, 1 << 21);
}
FFT最新卡常研究的更多相关文章
- 快速傅里叶变换(Fast-Fourier Transform,FFT)
数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...
- 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...
- 深度学习算子优化-FFT
作者:严健文 | 旷视 MegEngine 架构师 背景 在数字信号和数字图像领域, 对频域的研究是一个重要分支. 我们日常"加工"的图像都是像素级,被称为是图像的空域数据.空域数 ...
- Federated Learning: Challenges, Methods, and Future Directions
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...
- 2020国防科大综述:3D点云深度学习——综述(3D点云分割部分)
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀 ...
- 打FFT时中发现的卡常技巧
题目:洛谷P1919 A*B Problem 加强版 我的代码完全借鉴boshi,然而他380ms我880ms...于是我通过彻底的卡(chao)常(dai)数(ma)成功优化到了380ms,都是改了 ...
- Codeforces 986D - Perfect Encoding(FFT+爪巴卡常题)
题面传送门 题意:给出 \(n\),构造出序列 \(b_1,b_2,\dots,b_m\) 使得 \(\prod\limits_{i=1}^mb_i\geq n\),求 \(\sum\limits_{ ...
- BZOJ4836: [Lydsy1704月赛]二元运算【分治FFT】【卡常(没卡过)】
Description 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使 ...
- 浅谈FFT(快速傅里叶变换)
前言 啊摸鱼真爽哈哈哈哈哈哈 这个假期努力多更几篇( 理解本算法需对一些< 常 用 >数学概念比较清楚,如复数.虚数.三角函数等(不会的自己查去(其实就是懒得写了(¬︿̫̿¬☆) 整理了一 ...
随机推荐
- caffer的三种文件类别
solver文件 是一堆超参数,比如迭代次数,是否用GPU,多少次迭代暂存一次训练所得参数,动量项,权重衰减(即正则化参数),基本的learning rate,多少次迭代打印一次loss,以及网络结构 ...
- Dubbox服务的消费方配置
在src/main/resources下创建applicationContext-web.xml <?xml version="1.0" encoding="UTF ...
- Linux下Golang Socket编程原理分析与代码实现
在POSIX标准推出后,socket在各大主流OS平台上都得到了很好的支持.而Golang是自带Runtime的跨平台编程语言,Go中提供给开发者的Socket API是建立在操作系统原生Socket ...
- _declspec(dllexport)和.def(转)
节选自:windows下编译和使用动态库dll http://blog.eonew.cn/archives/865 Microsoft 在 Visual C++ 的 16 位编译器版本中引入了 __e ...
- koa2 的处理请求体koa-bodyparser koa-router 的中间件的学习
1.官网 https://www.npmjs.com/package/koa-router https://www.npmjs.com/package/koa-bodyparser 2. demo / ...
- application/x-www-form-urlencode/multipart/form-data
首先我们先认识下今天的application/x-www-form-urlencode/multipart/form-data属性所在的位置 1.form所属 在Form元素的语法中,EncType表 ...
- vue filters 日期
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 删除Excel空列
/// <summary> /// 删除Excel空列 /// </summary> /// <param name="excelPath">E ...
- Python爬虫实战——反爬策略之代理IP【无忧代理】
一般情况下,我并不建议使用自己的IP来爬取网站,而是会使用代理IP. 原因很简单:爬虫一般都有很高的访问频率,当服务器监测到某个IP以过高的访问频率在进行访问,它便会认为这个IP是一只"爬虫 ...
- input select 值得绑定与获取
<div style="margin-top:100px"> <!--Input 值得绑定--> <div id="app20"& ...