这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可

每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][i],一旦发现是非负数,i则是答案

需要注意的地方:初始化时将所有的dp[i][0]都赋值为0,一个都不选,代价当然是0

        dfs遇到u是叶子结点,那么dp[u][1]定义为这个结点的权值,其余状态用-inf来表示不可达

        其余状态全部赋初始值为-inf,表示目前不可达

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 3005
struct Edge{int to,nxt,w;}e[N<<];
int head[N],tot,n,m;
void add(int u,int v,int w){
e[tot].to=v;e[tot].nxt=head[u];e[tot].w=w;head[u]=tot++;
}
int dp[N][N],a[N],size[N];
void dfs1(int u,int pre){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs1(v,u);size[u]+=size[v];
}
}
void dfs2(int u,int pre){
if(a[u]){dp[u][]=a[u];return;}
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs2(v,u);
for(int j=size[u];j>=;j--)
for(int k=;k<=size[v];k++)
dp[u][j]=max(dp[u][j],dp[v][k]-e[i].w+dp[u][j-k]);
}
}
int main(){
memset(head,-,sizeof head);
cin>>n>>m;
for(int i=;i<=n-m;i++){
int k,v,w;cin>>k;
while(k--){
cin>>v>>w;
add(i,v,w);add(v,i,w);
}
}
for(int i=n-m+;i<=n;i++)
cin>>a[i],size[i]=;
memset(dp,-0x3f,sizeof dp);
for(int i=;i<=n;i++)dp[i][]=;
dfs1(,);dfs2(,); for(int i=m;i>=;i--)
if(dp[][i]>=){
cout<<i<<endl;
break;
}
}

依赖背包变形(经典)——poj1155的更多相关文章

  1. 依赖背包变形——poj1947(经典)

    /*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...

  2. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  3. 依赖背包变形——hdu4003

    思维性比较强,代码挺简单的,dp[u][j]表示在u子树下安排j个机器人,让其不回u 注意转移时的初始值 /* dp[u][j]为在子树u有j个机器人不回来 */ #include<bits/s ...

  4. poj1155 依赖背包

    /* 依赖背包 dp[i][j]表示i结点为根的树选择j个用户时的最大剩余费用 即背包容量是j,价值是最大费用 */ #include<iostream> #include<cstr ...

  5. J-流浪西邮之寻找火石碎片 【经典背包变形】

    题目来源:2019 ACM ICPC Xi'an University of Posts & Telecommunications School Contest 链接:https://www. ...

  6. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  7. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  8. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

  9. Codeforces Round #214 (Div. 2) C. Dima and Salad (背包变形)

    C. Dima and Salad time limit per test 1 second memory limit per test 256 megabytes input standard in ...

随机推荐

  1. 【Luogu】【关卡2-1】简单的模拟(2017年10月)

    任务说明:开始普及组的训练!所谓模拟,就是直接根据题意编写,思维难度简单. 铺地毯 进制转换 多项式输出 机器翻译 排座椅 笨小猴 都是简单模拟题  

  2. 数据结构(c语言版,严蔚敏)第1章绪论

    第1章严蔚敏

  3. Java 基础 -- BigInteger BigDecimai大数

    BigInteger 加减乘除 BigInteger bi1 = new BigInteger("123456789") ; // 声明BigInteger对象 BigIntege ...

  4. H5新属性 contenteditable

    contenteditable 属性规定元素内容是否可编辑 <div contenteditable style="width: 100px;height:100px"> ...

  5. v-for 循环 绑定对象 和数组

    <!--v-for 迭代数组--> <div id="app11"> <div v-for="info in infos"> ...

  6. CTSC2019

    (upd:随机立方体AC) 太菜了只会部分分.以后慢慢补坑吧…… 随机立方体: 30分: 正常人都能想到的的转移状态(我的确是弱智),从大往小填数,记录有多少个极大值点和三个方向上各占了多少.转移可以 ...

  7. hive自定义函数UDF UDTF UDAF

    Hive 自定义函数 UDF UDTF UDAF 1.UDF:用户定义(普通)函数,只对单行数值产生作用: UDF只能实现一进一出的操作. 定义udf 计算两个数最小值 public class Mi ...

  8. docker仓库管理(9)

    使用公共 Registry Docker Hub 是 Docker 公司维护的公共 Registry.用户可以将自己的镜像保存到 Docker Hub 免费的 repository 中.如果不希望别人 ...

  9. install busybox时报error: storage size of ‘rlimit_fsize’ isn’t known struct rlimit rlimit_fsize

    解决办法: 在busybox根目录下查找到文件:find -name libbb.h 在libbb.h.h中包含sys/resource.h 说明: 上述错误的原因是rlimit结构体未知,原因是相应 ...

  10. LeetCode K个一组翻转链表

    题目链接:https://leetcode-cn.com/problems/reverse-nodes-in-k-group/ 题目大意 略. 分析 逆转每一段,然后和上一段与下一段衔接即可,加头结点 ...