这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可

每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][i],一旦发现是非负数,i则是答案

需要注意的地方:初始化时将所有的dp[i][0]都赋值为0,一个都不选,代价当然是0

        dfs遇到u是叶子结点,那么dp[u][1]定义为这个结点的权值,其余状态用-inf来表示不可达

        其余状态全部赋初始值为-inf,表示目前不可达

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 3005
struct Edge{int to,nxt,w;}e[N<<];
int head[N],tot,n,m;
void add(int u,int v,int w){
e[tot].to=v;e[tot].nxt=head[u];e[tot].w=w;head[u]=tot++;
}
int dp[N][N],a[N],size[N];
void dfs1(int u,int pre){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs1(v,u);size[u]+=size[v];
}
}
void dfs2(int u,int pre){
if(a[u]){dp[u][]=a[u];return;}
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs2(v,u);
for(int j=size[u];j>=;j--)
for(int k=;k<=size[v];k++)
dp[u][j]=max(dp[u][j],dp[v][k]-e[i].w+dp[u][j-k]);
}
}
int main(){
memset(head,-,sizeof head);
cin>>n>>m;
for(int i=;i<=n-m;i++){
int k,v,w;cin>>k;
while(k--){
cin>>v>>w;
add(i,v,w);add(v,i,w);
}
}
for(int i=n-m+;i<=n;i++)
cin>>a[i],size[i]=;
memset(dp,-0x3f,sizeof dp);
for(int i=;i<=n;i++)dp[i][]=;
dfs1(,);dfs2(,); for(int i=m;i>=;i--)
if(dp[][i]>=){
cout<<i<<endl;
break;
}
}

依赖背包变形(经典)——poj1155的更多相关文章

  1. 依赖背包变形——poj1947(经典)

    /*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...

  2. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  3. 依赖背包变形——hdu4003

    思维性比较强,代码挺简单的,dp[u][j]表示在u子树下安排j个机器人,让其不回u 注意转移时的初始值 /* dp[u][j]为在子树u有j个机器人不回来 */ #include<bits/s ...

  4. poj1155 依赖背包

    /* 依赖背包 dp[i][j]表示i结点为根的树选择j个用户时的最大剩余费用 即背包容量是j,价值是最大费用 */ #include<iostream> #include<cstr ...

  5. J-流浪西邮之寻找火石碎片 【经典背包变形】

    题目来源:2019 ACM ICPC Xi'an University of Posts & Telecommunications School Contest 链接:https://www. ...

  6. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  7. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  8. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

  9. Codeforces Round #214 (Div. 2) C. Dima and Salad (背包变形)

    C. Dima and Salad time limit per test 1 second memory limit per test 256 megabytes input standard in ...

随机推荐

  1. thinkphp REST

    REST介绍 REST(Representational State Transfer表述性状态转移)是一种针对网络应用的设计和开发方式,可以降低开发的复杂性,提高系统的可伸缩性.REST提出了一些设 ...

  2. js 获取数组中的最大值和最小值

    var arr = [3,12,23,18,25,33,22,30,1] 方案一: 思想 首先对数组进行排序(小 >大),第一项为最小值,最后一项为最大值 var min; var max; a ...

  3. 如何禁止C++默认成员函数

    如何禁止C++默认成员函数 发表于 2016-03-02   |   分类于 C++  |   阅读次数 17 前言 前几天在一次笔试过程中被问到C++如何设计禁止调用默认构造函数,当时简单的想法是直 ...

  4. 关于python语言学习心得

    最近又开始学习代码了,中途停顿了2个月左右,学习贵在坚持. 内心非常渴望学会一门编程语言,对代码目前来说还不是排斥. 也没有什么好的学习方法,只是按照同事说的,买了一本书籍来,边看边练习,先熟悉它的语 ...

  5. 一些基本LINUX命令以及测试环境的搭建

    LINUX操作系统平时用的不多,资深测试与开发同学们用的比较多,像我这样的一个人,只喜欢WINDOWS操作系统.但LINUX操作系统也用过一段时间, 知道一些基本命令,如果不记得的话,就百度一下,拿来 ...

  6. 使用java.util.Properties工具制作自定义访问配置文件信息

    import ch.qos.logback.classic.Logger; import org.slf4j.LoggerFactory; import java.io.IOException; im ...

  7. UDP 两种丢包处理策略:丢包重传(ARQ) 和 前向纠错(FEC)

    目录 1. 两种丢包处理策略 2. 前向纠错(FEC) 3. 丢包重传(ARQ) [参考文献] 1. 两种丢包处理策略 为了保证实时性,通常适应UDP协议来针对RTP数据进行传输,而UDP无法保证数据 ...

  8. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  9. Django框架(四)—— 路由控制:有名/无名分组、反向解析、路由分发、名称空间、伪静态、APPEND_SLASH、不同版本的Django区别

    目录 路由控制 一.简单路由配置 二.无名分组 三.有名分组 四.反向解析 五.路由分发 六.名称空间(一般不使用) 七.伪静态 八.Django 2.x和Django 1.x 路由层区别 九.APP ...

  10. C语言结构体内存分配详情

    #include <stdio.h> int main() { /*************************************************** * * 结构体内存 ...