这个题用优化后的依赖背包做难以实现,所以用常规的泛化物品的和来做即可

每个节点的容量定义为这个节点下的叶子结点个数,dp[u][j]用来表示节点u下选取j个物品的最大收益,最后从m-0查询dp[1][i],一旦发现是非负数,i则是答案

需要注意的地方:初始化时将所有的dp[i][0]都赋值为0,一个都不选,代价当然是0

        dfs遇到u是叶子结点,那么dp[u][1]定义为这个结点的权值,其余状态用-inf来表示不可达

        其余状态全部赋初始值为-inf,表示目前不可达

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 3005
struct Edge{int to,nxt,w;}e[N<<];
int head[N],tot,n,m;
void add(int u,int v,int w){
e[tot].to=v;e[tot].nxt=head[u];e[tot].w=w;head[u]=tot++;
}
int dp[N][N],a[N],size[N];
void dfs1(int u,int pre){
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs1(v,u);size[u]+=size[v];
}
}
void dfs2(int u,int pre){
if(a[u]){dp[u][]=a[u];return;}
for(int i=head[u];i!=-;i=e[i].nxt){
int v=e[i].to;
if(v==pre)continue;
dfs2(v,u);
for(int j=size[u];j>=;j--)
for(int k=;k<=size[v];k++)
dp[u][j]=max(dp[u][j],dp[v][k]-e[i].w+dp[u][j-k]);
}
}
int main(){
memset(head,-,sizeof head);
cin>>n>>m;
for(int i=;i<=n-m;i++){
int k,v,w;cin>>k;
while(k--){
cin>>v>>w;
add(i,v,w);add(v,i,w);
}
}
for(int i=n-m+;i<=n;i++)
cin>>a[i],size[i]=;
memset(dp,-0x3f,sizeof dp);
for(int i=;i<=n;i++)dp[i][]=;
dfs1(,);dfs2(,); for(int i=m;i>=;i--)
if(dp[][i]>=){
cout<<i<<endl;
break;
}
}

依赖背包变形(经典)——poj1155的更多相关文章

  1. 依赖背包变形——poj1947(经典)

    /*这题显然不适用依赖背包的优化,因为不能保证根是必选的,但是可以按照常规依赖背包的思路进行转移,即每次对一个儿子进行C^2的转移 还是树形的背包,dp[u][j]表示u的子树里,切割出一个大小为j的 ...

  2. hdu4044 依赖背包变形 好题!

    由于不是求最大的可拦截的HP值,而是要将最小值最大化,那么就需要分配每个子树用的钱数以达到最小值最大化 第一步解决如何分配钱使得结点u的子树中用了j元钱后可以拦截的HP最大,这就是变形的分组(依赖)背 ...

  3. 依赖背包变形——hdu4003

    思维性比较强,代码挺简单的,dp[u][j]表示在u子树下安排j个机器人,让其不回u 注意转移时的初始值 /* dp[u][j]为在子树u有j个机器人不回来 */ #include<bits/s ...

  4. poj1155 依赖背包

    /* 依赖背包 dp[i][j]表示i结点为根的树选择j个用户时的最大剩余费用 即背包容量是j,价值是最大费用 */ #include<iostream> #include<cstr ...

  5. J-流浪西邮之寻找火石碎片 【经典背包变形】

    题目来源:2019 ACM ICPC Xi'an University of Posts & Telecommunications School Contest 链接:https://www. ...

  6. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  7. 依赖背包优化——ural1018,金明的预算方案

    经典题了,网上博客一大堆O(nCC)的做法,其实是可以将复杂度降到O(nC)的 参考依赖背包优化(泛化物品的并) 根据背包九讲,求两个泛化物品的和复杂度是O(CC)的,所以依赖背包暴力求解的复杂度是O ...

  8. 【HDU 4276】The Ghost Blows Light(树形DP,依赖背包)

    The Ghost Blows Light Problem Description My name is Hu Bayi, robing an ancient tomb in Tibet. The t ...

  9. Codeforces Round #214 (Div. 2) C. Dima and Salad (背包变形)

    C. Dima and Salad time limit per test 1 second memory limit per test 256 megabytes input standard in ...

随机推荐

  1. MySQL不支持事务处理的解决方法

    MySQL数据库默认的存储引擎类型是MyISAM,这种存储引擎类型不支持事务处理. 在MySQL中,只有InnoDB存储引擎类型的数据表才能支持事务处理. 因此,如果想让MySQL支持事务处理,只要将 ...

  2. RMQ区间求最值

    RMQ用于区间快速查找最值,适用于期间数值无更改的情况.其预处理的复杂度为O(nlogn),查询的时间复杂度为O(1),对比于线段树的预处理O(nlogn),查询O(logn)来说,在某些情况下有着其 ...

  3. 状态压缩dp增量统计贡献——cf1238E(好题)

    这题的状态设计非常巧妙,因为dp[S]表示的并非当前正确的值,而是维护一个中间量,这个中间量在到达末状态时才正确 当然官方的题解其实更加直观,只不过理解起来其实有点困难 /* 给定一个串s,字符集为2 ...

  4. Linux下常用的配置文件位置

    1.别名配置文件 [root@room8pc205 ~]# vim /root/.bashrc     #此处是root用户定义的别名文件的位置,只有root用户登录可用 [root@room8pc2 ...

  5. Framework7-Vue的UI组件代码

    Framework7-Vue提供了一套UI组件库,想要什么效果,直接到上面复制代码即可 http://www.framework7.cn/ 这里有非常多的ui组件,基本上可以满足项目中的大部分需求 h ...

  6. 重新学习Mysql数据库4:Mysql索引实现原理和相关数据结构算法

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  7. Java的poi技术遍历Excel时进行空Cell,空row,判断

    /** * 导入信息 */ @Override public List<Object> add(HttpServletRequest request) { // TODO Auto-gen ...

  8. SonarQube搭建和使用教程

    我想使用 SonarQube 查阅代码 请问怎么做,现在只有一个要审查代码的项目

  9. PAT_A1081#Rational Sum

    Source: PAT A1081 Rational Sum (20 分) Description: Given N rational numbers in the form numerator/de ...

  10. JSoup安装

    要运行任何jsoup示例,需要先安装好jsoup相关Jar包.到目前为止(2017年05月),jsoup的当前版本是1.10.2.0.安装jsoup主要有三种方法: 通过Maven的pom.xml配置 ...