《DSP using MATLAB》Problem 8.8
代码:
- %% ------------------------------------------------------------------------
- %% Output Info about this m-file
- fprintf('\n***********************************************************\n');
- fprintf(' <DSP using MATLAB> Problem 8.8 \n\n');
- banner();
- %% ------------------------------------------------------------------------
- % digital iir highpass filter
- b = [1 -1];
- a = [1 -0.9];
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Pole-Zero Plot')
- set(gcf,'Color','white');
- zplane(b,a);
- title(sprintf('Pole-Zero Plot'));
- %pzplotz(b,a);
- % corresponding system function Direct form
- K = 1; % gain parameter
- b = K*b; % denominator
- a = a; % numerator
- [db, mag, pha, grd, w] = freqz_m(b, a);
- % ---------------------------------------------------------------------
- % Choose the gain parameter of the filter, maximum gain is equal to 1
- % ---------------------------------------------------------------------
- gain1=max(mag) % with poles
- K = 1/gain1
- [db, mag, pha, grd, w] = freqz_m(K*b, a);
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR highpass filter')
- set(gcf,'Color','white');
- subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
- set(gca,'YTickMode','manual','YTick',[-60,-30,0])
- set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
- subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- set(gca,'YTickMode','manual','YTick',[0,1.0]);
- subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
- subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- %set(gca,'YTickMode','manual','YTick',[0,1.0]);
- % Impulse Response
- fprintf('\n----------------------------------');
- fprintf('\nPartial fraction expansion method: \n');
- [R, p, c] = residuez(K*b,a)
- MR = (abs(R))' % Residue Magnitude
- AR = (angle(R))'/pi % Residue angles in pi units
- Mp = (abs(p))' % pole Magnitude
- Ap = (angle(p))'/pi % pole angles in pi units
- [delta, n] = impseq(0,0,50);
- h_chk = filter(K*b,a,delta); % check sequences
- % ------------------------------------------------------------------------------------------------
- % gain parameter K=0.95
- % ------------------------------------------------------------------------------------------------
- h = ( 0.9.^n ) .* (-0.1056) + 1.0556 * delta;
- % ------------------------------------------------------------------------------------------------
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR hp filter, h(n) by filter and Inv-Z ')
- set(gcf,'Color','white');
- subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
- xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter');
- subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
- xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z');
- [db, mag, pha, grd, w] = freqz_m(h, [1]);
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR filter, h(n) by Inv-Z ')
- set(gcf,'Color','white');
- subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
- set(gca,'YTickMode','manual','YTick',[-60,-30,0])
- set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
- subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- set(gca,'YTickMode','manual','YTick',[0,1.0]);
- subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
- subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- %set(gca,'YTickMode','manual','YTick',[0,1.0]);
- % --------------------------------------------------
- % digital IIR comb filter
- % --------------------------------------------------
- b = K*[1 0 0 0 0 0 -1];
- a = [1 0 0 0 0 0 -0.9];
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Pole-Zero Plot')
- set(gcf,'Color','white');
- zplane(b,a);
- title(sprintf('Pole-Zero Plot'));
- [db, mag, pha, grd, w] = freqz_m(b, a);
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 IIR comb filter')
- set(gcf,'Color','white');
- subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
- set(gca,'YTickMode','manual','YTick',[-60,-30,0])
- set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
- subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- set(gca,'YTickMode','manual','YTick',[0,1.0]);
- subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
- subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
- set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
- %set(gca,'YTickMode','manual','YTick',[0,1.0]);
- % Impulse Response
- fprintf('\n----------------------------------');
- fprintf('\nPartial fraction expansion method: \n');
- [R, p, c] = residuez(b,a)
- MR = (abs(R))' % Residue Magnitude
- AR = (angle(R))'/pi % Residue angles in pi units
- Mp = (abs(p))' % pole Magnitude
- Ap = (angle(p))'/pi % pole angles in pi units
- [delta, n] = impseq(0,0,250);
- h_chk = filter(b,a,delta); % check sequences
- % ------------------------------------------------------------------------------------------------
- % gain parameter K=0.95
- % ------------------------------------------------------------------------------------------------
- %h = 0.0211 * (( 0.9791.^n ) .* (2*cos(0.4*pi*n) + 2*cos(0.8*pi*n) + 1)) - 0.0556*delta; %L=5;
- h = -0.0176 * ( ( 0.9826.^n ) .* ( 2*cos(2*pi*n/3) + 2*cos(pi*n/3) + (-1).^n + 1) ) + 1.0556*delta; %L=6;
- % ------------------------------------------------------------------------------------------------
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Comb filter, h(n) by filter and Inv-Z ')
- set(gcf,'Color','white');
- subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]);
- xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter');
- subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]);
- xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z');
- [db, mag, pha, grd, w] = freqz_m(h, [1]);
- figure('NumberTitle', 'off', 'Name', 'Problem 8.8 Comb filter, h(n) by Inv-Z ')
- set(gcf,'Color','white');
- subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]);
- set(gca,'YTickMode','manual','YTick',[-60,-30,0])
- set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- xlabel('frequency in \pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
- subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- set(gca,'YTickMode','manual','YTick',[0,1.0]);
- subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Phase Response in Radians');
- subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]);
- xlabel('frequency in \pi units'); ylabel('Rad'); title('Group Delay');
- set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
- %set(gca,'YTickMode','manual','YTick',[0,1.0]);
运行结果:
增益系数K
单个iir高通滤波器,零极点图
L=6阶梳状,系统函数部分分式展开
零极点的模和幅角
直接形式分子、分母系数直接求幅度谱、相位谱和群延迟
依据梳状滤波器系统函数部分分式展开,求逆z变换得到脉冲响应序列,由其求幅度谱、相位谱和群延迟,如下
直接形式求法和逆z变换求法,幅度谱、相位谱一致,但群延迟不同。
《DSP using MATLAB》Problem 8.8的更多相关文章
- 《DSP using MATLAB》Problem 7.27
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.26
注意:高通的线性相位FIR滤波器,不能是第2类,所以其长度必须为奇数.这里取M=31,过渡带里采样值抄书上的. 代码: %% +++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.25
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.24
又到清明时节,…… 注意:带阻滤波器不能用第2类线性相位滤波器实现,我们采用第1类,长度为基数,选M=61 代码: %% +++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.23
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info a ...
- 《DSP using MATLAB》Problem 7.16
使用一种固定窗函数法设计带通滤波器. 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.15
用Kaiser窗方法设计一个台阶状滤波器. 代码: %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
- 《DSP using MATLAB》Problem 7.14
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.13
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- 《DSP using MATLAB》Problem 7.12
阻带衰减50dB,我们选Hamming窗 代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ...
随机推荐
- LeetCode动态规划题总结【持续更新】
以下题号均为LeetCode题号,便于查看原题. 10. Regular Expression Matching 题意:实现字符串的正则匹配,包含'.' 和 '*'.'.' 匹配任意一个字符,&quo ...
- vue中获取节点.
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- Android 开发 框架系列 OkHttp文件上传功能实现(含断点续传)
前言 此篇博客只是上传功能的记录demo,如果你还不太了解okhttp可以参考我的另一篇博客https://www.cnblogs.com/guanxinjing/p/9708575.html 代码部 ...
- AndroidStudio 搜索导入自己需要的库
前言 在Androidx的库应用后,导致有需多系统组件库需要重新 implementation 升级为Androidx, 但是你可能会发现不知道怎么导入他们. 当然除了导入Android的组件库,还 ...
- Leetcode - K Sum
List<List<Integer>> kSum_Trim(int[] a, int target, int k) { List<List<Integer>& ...
- thinkphp 正则路由
正则路由也就是采用正则表达式定义路由的一种方式,依靠强大的正则表达式,能够定义更灵活的路由规则. 路由表达式支持的正则定义必须以“/”开头,否则就视为规则表达式.也就是说如果采用: '#^blog\/ ...
- The Python Standard Library
The Python Standard Library¶ While The Python Language Reference describes the exact syntax and sema ...
- Java中String str=new String("a")和String str = "a"有什么区别?
Q: String A="ABC"; String B=new String("ABC"); 这两个值,A,B 是否相等,如果都往HashSet里面放,能放下吗 ...
- Mysql优化系列之查询性能优化前篇1
前言 这是优化系列的最后一篇的第1小篇,我们其实可以直接从sql怎么写讲起,why not?但是我还是决定花2个篇幅 问一些问题,带着几个问题循序渐进的往下走. 一个sql语句是怎么被执行的? sql ...
- html自定义分页
public class MyPager { /// <summary> /// 每一页数据的条数 /// </summary> public int PageSize { g ...