题目

题目大意

题目化简一下,就变成:

构造一个\(01\)数列\(A\),使得\(D=\sum A_iA_jB_{i,j}-\sum A_iC_i\)最大。

问这个最大的\(D\)是多少。


正解

其实这是一个网络流的二元关系问题……

如果\(A_i\)为\(1\),则会有\(-C_i\)的贡献。

如果\(A_i\)和\(A_j\)皆为\(1\),则会有\(B_{i,j}\)的贡献。

然后很显然地,\(70\)分的方法就出来了:每个点朝汇点连一条容量为\(C_i\)的边,对于每个\(B_{i,j}\),建一个新点,从源点朝它连一条容量为\(B_{i,j}\)的边,它朝\(i\)和\(j\)连容量为无限大的边。然后最小割即可。

这个算法的瓶颈在于这些新点太多了,能不能不用建立新点?

实际上有个很妙的方法:对于每一对\(i\)和\(j\),从原点向\(i\)连一条容量为\(B_{i,j}\)的边,同样地向\(j\)连一条容量为\(B_{j,i}\)的边。\(i\)向\(j\)连一条容量为\(B_{i,j}\)的边,\(j\)向\(i\)连一条容量为\(B_{j,i}\)的边。

那么这有什么用呢?当\(C_i\)的那条边被保留的时候,源点向\(i\)连的那条\(B_{i,j}\)的边会被割掉,还有源点连向\(j\)或者\(j\)连向\(i\)的那条边也会被割掉。

另一种建图方式跟这个比较类似,只是把边权换成了\(\frac{B_{i,j}+B_{j,i}}{2}\)罢了。因为只要保留\(C_i\)或者\(C_j\),割掉的边都是\(B_{i,j}+B_{j,i}\)。

对于源点向\(i\)和\(j\)连的边,显然可以合并起来。所以图中的点和边的数量就大大减少了。


代码

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
#define N 610
inline int input(){
char ch=getchar();
while (ch<'0' || '9'<ch)
ch=getchar();
int x=0;
do{
x=x*10+ch-'0';
ch=getchar();
}
while ('0'<=ch && ch<='9');
return x;
}
int n;
int b[N][N],c[N];
struct EDGE{
int to,c;
EDGE *las;
} e[2000000];
int ne;
EDGE *last[N];
inline void link(int u,int v,int c){
e[ne]={v,c,last[u]};
last[u]=e+ne++;
}
int S,T;
#define rev(ei) (e+(((ei)-e)^1))
int dis[N],gap[N],BZ;
EDGE *cur[N];
int dfs(int x,int s){
if (x==T)
return s;
int have=0;
for (EDGE *ei=cur[x];ei;ei=ei->las){
cur[x]=ei;
if (ei->c && dis[x]==dis[ei->to]+1){
int t=dfs(ei->to,min(s-have,ei->c));
ei->c-=t,rev(ei)->c+=t,have+=t;
if (have==s)
return s;
}
}
cur[x]=last[x];
if (!--gap[dis[x]])
BZ=0;
dis[x]++;
gap[dis[x]]++;
return have;
}
inline int flow(){
gap[0]=n+2;
int res=0;
BZ=1;
while (BZ)
res+=dfs(S,INT_MAX);
return res;
}
int main(){
n=input();
for (int i=1;i<=n;++i)
for (int j=1;j<=n;++j)
b[i][j]=input();
for (int i=1;i<=n;++i)
c[i]=input();
S=n+1,T=n+2;
int all=0;
for (int i=1;i<=n;++i){
int sum=0;
for (int j=1;j<=n;++j)
sum+=b[j][i];
all+=sum;
link(S,i,sum),link(i,S,0);
for (int j=1;j<i;++j)
link(i,j,b[j][i]),link(j,i,b[i][j]);
link(i,T,c[i]),link(T,i,0);
}
printf("%d\n",all-flow());
return 0;
}

总结

见到二元关系类型的题目,首先要想到网络流啊……

[JZOJ1900] 【2010集训队出题】矩阵的更多相关文章

  1. [JZOJ1901] 【2010集训队出题】光棱坦克

    题目 题目大意 给你个平面上的一堆点,问序列\({p_i}\)的个数. 满足\(y_{p_{i-1}}>y_{p_i}\)并且\(x_{p_i}\)在\(x_{p_i-1}\)和\(x_{p_i ...

  2. [JZOJ1904] 【2010集训队出题】拯救Protoss的故乡

    题目 题目大意 给你一个树形的网络,每条边从父亲流向儿子.根节点为原点,叶子节点流向汇点,容量为无穷大. 可以给一些边扩大容量,最多总共扩大\(m\)容量.每条边的容量有上限. 求扩大容量后最大的最大 ...

  3. [期望DP][纪中]【2010集训队出题】彩色圆环

    彩色圆环 感谢名单 十分感谢 JA_Ma 为我讲解了 \(T1\) 的 期望DP 的思想和推论. 十分感谢 SSL_LYF 为我解答了 \(T1\) 的 期望DP 的概率的大小问题. 十分感谢 SSL ...

  4. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  5. BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2467 题意: 思路:要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会 ...

  6. bzoj 2252 [ 2010 Beijing wc ] 矩阵距离 —— 多源bfs

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2252 又没能自己想出来... 一直在想如何从每个1开始广搜更新答案,再剪剪枝,什么遇到1就不 ...

  7. 数据结构(莫队算法):国家集训队2010 小Z的袜子

    [题目描述] 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到 ...

  8. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  9. 【BZOJ2117】 [2010国家集训队]Crash的旅游计划

    [BZOJ2117] [2010国家集训队]Crash的旅游计划 Description 眼看着假期就要到了,Crash由于长期切题而感到无聊了,因此他决定利用这个假期和好友陶陶一起出去旅游. Cra ...

随机推荐

  1. layui的选项卡(tab)的问题

    当页面打开单个tab时,操作栏显示: 当页面打开多个tab时,会发现操作栏与下面第一个tab显示的操作栏类型一样,并且操作栏的按钮无作用 第一个标签操作栏显示: 产生这样的原因:使用layui时,每个 ...

  2. js 点击获取验证码后的倒数60s

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <script ...

  3. 无法CREATE UNIQUE INDEX;找到重复的关键字

  4. sersync/lsyncd实时同步

    第一章 sersync/lsync实时同步 1.1 实时同步服务原理/概念 1)需要部署好rsync守护进程服务,实现数据传输 2)需要部署好inotify服务,实现目录中数据变化监控 3)将rsyn ...

  5. LVS DR模拟实验

    准备多台服务器,现以三台服务器为例第一台做调度器 192.168.200.111[root@localhost ~]# iptables -F[root@localhost ~]# setenforc ...

  6. 【SGU194】Reactor Cooling

    题目大意 给定一个无源无汇的网络,边的容量有上下界限制,试构造一个合理的流量. 题目分析 求无源汇上下界的可行流模板题. ①增加一个附加源和汇\(S,T\). ②把每个节点的\(\sum b_{u,i ...

  7. 24. Java SE 、 Java EE 、JavaME 、 JavaWeb 直接的区别和联系

    这个是在别人博客抄的,并不是本人撰写 Java是一门编程语言.Java分为三大版本,SE即标准版,包含了Java核心类库,主要用来开发桌面应用:EE即企业版,包含SE,又有扩展部分(Servlet,J ...

  8. Java Swing 窗体屏幕居中

    Java开发桌面程序用AWT或SWING,可以用设置主窗口位置,使主窗口居中一般使用下面的方法: 01.第一种方法              int windowWidth = frame.getWi ...

  9. Intervals POJ - 3680

    传送门 给定数轴上n个带权区间$[l_i,r_i]$,权值为$w_i$ 选出一些区间使权值和最大,且每个点被覆盖次数不超过k次. 离散+拆点,最大费用可行流(跑到费用为负为止) 第一部分点按下标串起来 ...

  10. ionic-CSS:ionic 列表

    ylbtech-ionic-CSS:ionic 列表 1.返回顶部 1. ionic 列表 列表是一个应用广泛的界面元素,在所有移动app中几乎都会使用到. 列表可以是基本文字.按钮,开关,图标和缩略 ...