多源最短路(floyd算法)
Floyd算法:
如何简单方便的求出图中任意两点的最短路径
Floyd-Warshall算法(O(n)比较适用于边较多的稠密图(Dense Graph))
Floyd算法用来找出每对顶点之间的最短距离,它对图的要求是,既可以是无向图也可以是有向图,边权可以为负,但是不能存在负环(可根据最小环的正负来判定).
思想:
Floyd算法基于动态规划的思想,以 u 到 v 的最短路径至少经过前 k 个点为转移状态进行计算,通过 k 的增加达到寻找最短路径的目的.当 k 增加 1 时,最短路径要么不边,如果改变,必经过第 k 各点,也就是说当起点 u 到第 k 个点的最短距离加上第 k 个点到终点 v 的最短路径小于不经过第 k 个节点的最优最短路经长度的时候更新 u 到 v 的最短距离. 当 k = n 时, u 到 v 的最短路径就确定了.
代码:
int n,m,d[][];//点数,边数,邻接矩阵
scanf("%d%d",&n,&m); memset(d,INF,sizeof(d));//初始化邻接矩阵
for(int i=;i<=n;i++){
d[i][i]=;
}
for(int i=;i<=m;i++){
scanf("%d%d%d",&a,&b,&c);//边的信息
d[a][b]=c;
//d[b][a]=c 无向图调用
} for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(d[i][k]<INF&&d[k][j]<INF){ //判断是否能从松弛点到达
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
}
}
}
多源最短路(floyd算法)的更多相关文章
- 多源最短路Floyd 算法————matlab实现
弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...
- 多源最短路——Floyd算法
Floyd算法 问题的提出:已知一个有向网(或者无向网),对每一对定点vi!=vj,要求求出vi与vj之间的最短路径和最短路径的长度. 解决该问题有以下两种方法: (1)轮流以每一个定点为源点,重复执 ...
- 模板C++ 03图论算法 2最短路之全源最短路(Floyd)
3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...
- 【ACM程序设计】求短路 Floyd算法
最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...
- 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)
再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...
- 最短路 - floyd算法
floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...
- HDU 2066 最短路floyd算法+优化
http://acm.hdu.edu.cn/showproblem.php?pid=206 题意 从任意一个邻居家出发 到达任意一个终点的 最小距离 解析 求多源最短路 我想到的是Floyd算法 但是 ...
- 最短路--floyd算法模板
floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...
- 单源最短路——Bellman-Ford算法
1.Dijkstra的局限性 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 列如以 ...
随机推荐
- [CF1311A] Add Odd or Subtract Even
Solution a<b, delta=odd, ans=1 a<b, delta=even, ans=2 a=b ans=0 a>b, delta=odd, ans=2 a> ...
- opencv —— normalize 矩阵归一化
归一化:就是将数据通过某种算法,限制需要的一定范围内. 归一化的目的:简而言之,是使得没有可比性的数据变得具有可比性,同时又保持相比较的两个数据之间的相对关系,如大小关系:或是为了作图,原来很难在一张 ...
- antd-design
1. 有mock 时候进度条展示不正常
- Python_3
""" Function_1: 寻找水仙花数. 水仙花数也被称为超完全数字不变数.自恋数.自幂数.阿姆斯特朗数, 它是一个3位数,该数字每个位上数字的立方之和正好等于它本 ...
- Linux 进程调度笔记(一)
主要讨论的是单核 CPU 的情况下,进行调度的一些算法和思路.讨论都是基于单核 CPU 的条件下进行. 在内存中,无论对于用户而言有多少个进程,但在 CPU 运行的时候,总是只有只执行一个进程.进程调 ...
- .net mvc接收参数为null的解决方案
1.通过对象接收请求数据时的null 必须为对象的属性设置get与set private System.String _EMail = System.String.Empty; public Syst ...
- CodeForces - 1105D 多源搜索
#include<bits/stdc++.h> using namespace std; typedef long long ll; struct node{ int x,y; ll se ...
- Luogu2577 | [ZJOI2005]午餐 (贪心+DP)
题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口)不同,所以他 ...
- 关于Java8中的Comparator那些事
在前面一篇博文中,对于java中的排序方法进行比较和具体剖析,主要是针对 Comparator接口和 Comparable接口,无论是哪种方式,都需要实现这个接口,并且重写里面的 方法.Java8中对 ...
- win10下以管理员身份打开hosts文件
第一步: 第二步: 第三步:先后执行两个命令cmd notepad hosts 最后一步:在记事本中修改host文件