题目描述

FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目。至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100)条跑道上。 农场上的跑道有一些交汇点,每条跑道都连结了两个不同的交汇点 I1_i和I2_i(1 <= I1_i <= 1,000; 1 <= I2_i <= 1,000)。每个交汇点都是至少两条跑道的端点。 奶牛们知道每条跑道的长度length_i(1 <= length_i <= 1,000),以及每条跑道连结的交汇点的编号 并且,没有哪两个交汇点由两条不同的跑道直接相连。你可以认为这些交汇点和跑道构成了一张图。 为了完成一场接力跑,所有N头奶牛在跑步开始之前都要站在某个交汇点上(有些交汇点上可能站着不只1头奶牛)。当然,她们的站位要保证她们能够将接力棒顺次传递,并且最后持棒的奶牛要停在预设的终点。 你的任务是,写一个程序,计算在接力跑的起点(S)和终点(E)确定的情况下,奶牛们跑步路径可能的最小总长度。显然,这条路径必须恰好经过N条跑道。

输入格式

第1行: 4个用空格隔开的整数:N,T,S,以及E
第2..T+1行: 第i+1为3个以空格隔开的整数:length_i,I1_i,以及I2_i, 描述了第i条跑道。

输出格式

第1行: 输出1个正整数,表示起点为S、终点为E,并且恰好经过N条跑道的路 径的最小长度

样例

样例输入

2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9

样例输出

10

solution:

线性代数第一题

好像有人告诉过我一个结论:对于一个邻接矩阵A(元素只有0,1,表示有没有这条道路,不能带权值),

An中元素a[i][j]就是从i到j走n步的路径条数

好吧,那么矩阵快速幂一下

 #include<iostream>
#include<cstdio>
#include<cstring>
#define MAXN 1000005
#define MAXM 205
using namespace std;
int n,t,s,e,id[MAXN],tot_num=;
struct matrix{
int dis[MAXM][MAXM];
void clear(){memset(dis,0x3f,sizeof(dis));}
void clean(){
memset(dis,0x3f,sizeof(dis));
for(int i=;i<=tot_num;i++)
dis[i][i]=;
}
friend matrix operator * (matrix a,matrix b){
matrix c;
c.clear();
for(int i=;i<=tot_num;i++)
for(int j=;j<=tot_num;j++)
for(int k=;k<=tot_num;k++)
c.dis[i][j]=min(c.dis[i][j],a.dis[i][k]+b.dis[k][j]);
return c;
}
friend matrix operator ^ (matrix a,int b){
matrix c;
c.clean();
while(b){
if(b&) c=c*a;
a=a*a;
b>>=;
}
return c;
}
}ans,a;
int main(){
scanf("%d%d%d%d",&n,&t,&s,&e);
a.clear();ans.clean();
for(int i=,l,u,v;i<=t;i++){
scanf("%d%d%d",&l,&u,&v);
if(!id[u]) id[u]=++tot_num;
if(!id[v]) id[v]=++tot_num;
u=id[u],v=id[v];
a.dis[u][v]=a.dis[v][u]=min(a.dis[u][v],l);
}
ans=a^n;
printf("%d\n",ans.dis[id[s]][id[e]]);
return ;
}

好像有离散化

bzoj1706 relays 奶牛接力跑 线性代数的更多相关文章

  1. 2018.11.09 bzoj1706: relays 奶牛接力跑(倍增+floyd)

    传送门 倍增+floyd板子题. 先列出状态fi,j,kf_{i,j,k}fi,j,k​表示经过iii条边从jjj到kkk的最短路. 然后发现可以用fi−1,j,kf_{i-1,j,k}fi−1,j, ...

  2. 【BZOJ1706】[usaco2007 Nov]relays 奶牛接力跑 矩阵乘法

    [BZOJ1706][usaco2007 Nov]relays 奶牛接力跑 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项 ...

  3. 「题解」:[线性代数]:relays 奶牛接力跑

    问题: relays 奶牛接力跑 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼 ...

  4. 【BZOJ】【1046】/【POJ】【3613】【USACO 2007 Nov】Cow Relays 奶牛接力跑

    倍增+Floyd 题解:http://www.cnblogs.com/lmnx/archive/2012/05/03/2481217.html 神题啊= =Floyd真是博大精深…… 题目大意为求S到 ...

  5. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  6. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑 离散化+倍增Floyd

    题目描述 FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T <= 100) ...

  7. BZOJ 1706: [usaco2007 Nov]relays 奶牛接力跑

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  8. bzoj 1706: [usaco2007 Nov]relays 奶牛接力跑——倍增floyd

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  9. bzoj1706: [Usaco2007 Nov]relays 奶牛接力跑 (Floyd+新姿势)

    题目大意:有t(t<=100)条无向边连接两点,求s到e刚好经过n(n<=10^7)条路径的最小距离. 第一反应分层图,但是一看n就懵逼了,不会写.看了题解之后才知道可以这么玩... 首先 ...

随机推荐

  1. [JZOJ6278] 2019.8.5【NOIP提高组A】跳房子

    题目 题目大意 给你一个矩阵,从\((1,1)\)开始,每次往右上.右.右下三个格子中权值最大的那个跳. 第一行上面是第\(n\)行,第\(m\)列右边是第\(1\)列.反之同理. 有两个操作:跳\( ...

  2. yield支持的协程

    #_author:来童星#date:2019/12/12def consumer(name): print("--->start...") while True: new_b ...

  3. golang中net/http包的简单使用

    一.介绍 http包提供了http客户端和服务端的实现 Get,Head,Post和PostForm函数发出http.https的请求 程序在使用完回复后必须关闭回复的主体 #简单的访问网站,由于没有 ...

  4. day 70 Django基础五之django模型层(二)多表操作

    Django基础五之django模型层(二)多表操作   本节目录 一 创建模型 二 添加表记录 三 基于对象的跨表查询 四 基于双下划线的跨表查询 五 聚合查询.分组查询.F查询和Q查询 六 ORM ...

  5. abstract类与interface

    抽象类: 1.用abstract修饰,抽象类中可以没有抽象方法,但抽象方法肯定在抽象类中,且抽象方法定义时不能有方法体:         2.抽象类不可以实例化只能通过继承在子类中实现其所有的抽象方法 ...

  6. <随便写>进程基本知识

    from multiprocessing import Process, Queue,Pool import time import os def producer(q): for i in rang ...

  7. vue swiper异步加载轮播图,并且懒加载

    参考:https://blog.csdn.net/weixin_38304202/article/details/78282826 效果: 此处安装省略 vue: <div class=&quo ...

  8. springcloud ribbon Finchley 版本,自定义算法

    引用上一个项目,在原有的基础上进行更改,添加springcloud的内荣. eureka-server 和上一个springcloud eureka的一样,没有改动. 添加cloud-api pack ...

  9. Expression表达式 实现and、or搜索

    用法: [HttpPost] public ActionResult GetBannerList(int pageIndex, int pageSize, string search) { Resul ...

  10. 如何将存储在MongoDB数据库中的数据导出到Excel中?

    将MongoDB数据库中的数据导出到Excel中,只需以下几个步骤: (1)首先,打开MongoDB安装目录下的bin文件夹,(C:\Program Files (x86)\MongoDB\Serve ...