题目描述

你准备给弟弟 Ike 买一件礼物,但是,Ike 挑选礼物的方式很特别:他只喜欢那些能被他排成有序形状的东西。

你准备给 Ike 买一个风铃。风铃是一种多层的装饰品,一般挂在天花板上。

每个风铃都包含一些由竖直线连起来的水平杆。每根杆的两头都有线连接,下面或者挂着另一根水平杆,或者挂着一个玩具。下面是一个风铃的例子:

为了满足弟弟,你需要选一个满足下面两个条件的风铃:

(1) 所有的玩具都在同一层(也就是说,每个玩具到天花板之间的杆的个数是一样的)或至多相差一层。

(2) 对于两个相差一层的玩具,左边的玩具比右边的玩具要更靠下一点。

风铃可以按照下面的规则重新排列:任选一根杆,将杆两头的线“交换”。也就是解开一根杆左右两头的线,然后将它们绑到杆的另一头。这个操作不会改变更下面的杆上线的排列顺序。

正在训练信息学奥林匹克的你,决定设计一个算法,判断能否通过重新排列,将一个给定的风铃变为 Ike 喜欢的样子。

考虑上面的例子,上图中的风铃满足条件(1),却不满足条件(2)——最左边的那个玩具比它右边的要高。

但是,我们可以通过下面的步骤把这个风铃变成一个 Ike 喜欢的:

第一步,将杆 1 的左右两边交换,这使得杆 2 和杆 3 的位置互换,交换的结果如下图所示:

第二步,也是最后一步,将杆 2 的左右两边交换,这使得杆 4 到了左边,原来在左边的玩具到了右边,交换的结果发下图所示:



现在的这个风铃就满足 Ike 的条件了。

你的任务是:给定一个风铃的描述,求出最少需要多少次交换才能使这风铃满足 Ike 的条件(如果可能)

输入输出格式

输入格式:

输入的第一行包含一个整数 n(1≤n≤100 000),表示风铃中有多少根杆。

接下来的 n 行描述杆的连接信息。这部分的第 i 行包含两个由空格分隔的整数 li和 ri,描述杆 i 的左右两边悬挂的东西。如果挂的是一个玩具,则对应的值为-1,否则为挂在下面的杆的编号

输出格式:

输出仅包含一个整数。表示最少需要多少次交换能使风铃满足 Ike 的条件。如果不可能满足,输出-1。

输入输出样例

输入样例#1: 复制

6

2 3

-1 4

5 6

-1 -1

-1 -1

-1 -1

输出样例#1: 复制

2

dfs

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100005;
struct Node{
int ls,rs;
}node[maxn];
int n,minn,maxx,ans;
inline void dfs(int u,int s){
if(u==-1){
minn=min(minn,s+1);
maxx=max(maxx,s+1);
return;
}
dfs(node[u].ls,s+1);
dfs(node[u].rs,s+1);
}
inline int solve(int u,int s){
if(u==-1){
if(s+1==minn) return 0;
return 1;
}
int x=solve(node[u].ls,s+1);
int y=solve(node[u].rs,s+1);
if((x==0 && y==1) || (x==2 && y==1) || (x==0 && y==2)) ans++;
if(x==2 || y==2){
if(x==2 && y==2){
printf("-1");
exit(0);
}
return 2;
}
if(x==0 && y==0) return 0;
if(x==0 && y==1) return 2;
if(x==1 && y==0) return 2;
if(x==1 && y==1) return 1;
}
int main(){
scanf("%d",&n);
maxx=0;
minn=0x4f4f4f4f;
for(register int i=1;i<=n;i++)
scanf("%d%d",&node[i].ls,&node[i].rs);
dfs(1,0);
// cout<<maxx<<" "<<minn<<endl;
if(maxx-minn>1){
printf("-1");
return 0;
}
else if(maxx==minn){
printf("0");
return 0;
}
solve(1,0);
printf("%d",ans);
return 0;
}

APIO 2007 风铃的更多相关文章

  1. APIO 2007 动物园 题解

    链接题面 看清楚找到小数据范围,第一维表示遍历到的栅栏,第二维是五位状态 先预处理每个状态会使多少小朋友高兴 方程是  f[i][j]=max(f[(i&((1<<4)-1))&l ...

  2. dp式子100个……

    1.        资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.        资源问题2------01背包问题F[I,j]:=max(f[i- ...

  3. dp方程

    1.        资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.        资源问题2 ------01背包问题   F[I,j]:=ma ...

  4. CSP初赛复习

    初赛复习 初赛一定要过啊,否则付出的那么多都白搭了! while(1) ++csp.rp,++csp.luck,++csp.scores; 历史 2020年开始,除NOIP以外的NOI系列其他赛事(包 ...

  5. P3620 [APIO/CTSC 2007]数据备份

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  6. 洛谷 P3620 [APIO/CTSC 2007]数据备份 解题报告

    P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同 ...

  7. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  8. 题解:[APIO/CTSC 2007]数据备份

    你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已 ...

  9. [luogu3620][APIO/CTSC 2007]数据备份【贪心+堆+链表】

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

随机推荐

  1. Cache技术―OSCache

    Cache技术―OSCache 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://aumy2008.blogbus.com/logs/36462938.html 一.简介 ...

  2. PHP FILTER_VALIDATE_URL 过滤器

    定义和用法 FILTER_VALIDATE_URL 过滤器把值作为 URL 来验证. Name: "validate_url" ID-number: 273 可能的标志: FILT ...

  3. ubuntu 下gcc的编译运行

    一些基本的操作 $gcc test.c //将test.c预处理.汇编.编译并链接形成可执行文件test $gcc test.c -o test //-o用来指定输出文件的文件名 $gcc -E te ...

  4. Shell基础(三):使用for循环结构、使用while循环结构、基于case分支编写脚本、使用Shell函数、中断及退出

    一.使用for循环结构 目标: 本案例要求编写一个Shell脚本chkhosts.sh,利用for循环来检测多个主机的存活状态,相关要求及说明如下: 1> 对192.168.4.0/24网段执行 ...

  5. [Go语言]cgo用法演示

        经历了数十年发展的C语言,各种各样的现成的库已经非常丰富.通过cgo,可以在Go语言中使用C语言代码,充分利用好现有的“轮子”. 本文所有代码,在下述环境中调试通过: Windows 8.1 ...

  6. IdentityServer4认证服务器集成Identity&配置持久化数据库

    文章简介 asp.net core的空Web项目集成相关dll和页面文件配置IdnetityServer4认证服务器 Ids4集成Identity Ids4配置持久化到数据库 写在最前面,此文章不详细 ...

  7. KMP概念上小结

    kmp算法的时间复杂度是O(m+n) 主要作用: 1.最长公共前后缀问题 2.原串中含有几个模式串问题 3.循环节问题

  8. mkdir无法创建目录权限不够

    https://idc.wanyunshuju.com/cym/40.html 由于在公司服务器上权限问题比较复杂,我们解决这个问题是寻求服务器端人员的意见.让他们授予权限/.

  9. adapter设计模式

    适配器设计模式 将一个类的接口转换成客户希望的另外一个接口.Adapter 模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作 例如:现在有一个220V的插口,而手机不能直接接上去,因为锂电 ...

  10. java-day26

    ## DOM简单学习:为了满足案例要求     * 功能:控制html文档的内容     * 获取页面标签(元素)对象:Element         * document.getElementByI ...