P1217
最快的办法就是打表了。。。不然怎么都会TLE。
先计算出给定最大范围内的所有回文质数:
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < b; i++)
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define index(a) (a - 'A')
#define transUpp(a) (a - 32)
#define transLow(a) (a + 32)
#define ll long long
#define PB push_back
int gcd(int a, int b){return b == 0 ? a : gcd(a%b, a);}
const ll N = 100000010;
ll s, e;
bool prime[N];
void sprime() // 筛法
{
for (ll i = 0; i <= N; i++)
prime[i] = true;
for (int i = 2; i <= sqrt(N); i++)
if (prime[i])
for (ll j = i*i; j <= N; j += i)
prime[j] = false;
}
bool isprime(ll num)
{
for (ll i = 2; i <= sqrt(num); i++)
if (num%i == 0) return false;
return true;
}
bool rever(ll x, ll num, int& k)
{
ll y = 0;
while(x)
{
int t = x%10;
y = y*10 + t;
x = (x - t)/10;
++k;
}
if (num == y)
return true;
return false;
}
int main()
{
cin >> s >> e;
int k;
bool f;
cout << "ll prime[] = {" << endl;
for (ll i = s; i <= e; i++)
{
k = 0;
f = rever(i, i, k);
if (i == 2 || i == 11) cout << i << ',' << endl;
else if (i == 1 || k % 2 == 0 || i % 2 == 0) continue;
else if (f && isprime(i)) cout << i << ',' << endl;
}
cout << "};" << endl;
return 0;
}
然后把结果复制出来,用循环把属于范围内的打印出来就好了。
#include <bits/stdc++.h>
using namespace std;
ll s, e;
ll prime[] = {
2,
3,
5,
7,
11,
101,
131,
151,
181,
191,
313,
353,
373,
383,
727,
757,
787,
797,
919,
929,
10301,
10501,
10601,
11311,
11411,
12421,
12721,
12821,
13331,
13831,
13931,
14341,
14741,
15451,
15551,
16061,
16361,
16561,
16661,
17471,
17971,
18181,
18481,
19391,
19891,
19991,
30103,
30203,
30403,
30703,
30803,
31013,
31513,
32323,
32423,
33533,
34543,
34843,
35053,
35153,
35353,
35753,
36263,
36563,
37273,
37573,
38083,
38183,
38783,
39293,
70207,
70507,
70607,
71317,
71917,
72227,
72727,
73037,
73237,
73637,
74047,
74747,
75557,
76367,
76667,
77377,
77477,
77977,
78487,
78787,
78887,
79397,
79697,
79997,
90709,
91019,
93139,
93239,
93739,
94049,
94349,
94649,
94849,
94949,
95959,
96269,
96469,
96769,
97379,
97579,
97879,
98389,
98689,
1003001,
1008001,
1022201,
1028201,
1035301,
1043401,
1055501,
1062601,
1065601,
1074701,
1082801,
1085801,
1092901,
1093901,
1114111,
1117111,
1120211,
1123211,
1126211,
1129211,
1134311,
1145411,
1150511,
1153511,
1160611,
1163611,
1175711,
1177711,
1178711,
1180811,
1183811,
1186811,
1190911,
1193911,
1196911,
1201021,
1208021,
1212121,
1215121,
1218121,
1221221,
1235321,
1242421,
1243421,
1245421,
1250521,
1253521,
1257521,
1262621,
1268621,
1273721,
1276721,
1278721,
1280821,
1281821,
1286821,
1287821,
1300031,
1303031,
1311131,
1317131,
1327231,
1328231,
1333331,
1335331,
1338331,
1343431,
1360631,
1362631,
1363631,
1371731,
1374731,
1390931,
1407041,
1409041,
1411141,
1412141,
1422241,
1437341,
1444441,
1447441,
1452541,
1456541,
1461641,
1463641,
1464641,
1469641,
1486841,
1489841,
1490941,
1496941,
1508051,
1513151,
1520251,
1532351,
1535351,
1542451,
1548451,
1550551,
1551551,
1556551,
1557551,
1565651,
1572751,
1579751,
1580851,
1583851,
1589851,
1594951,
1597951,
1598951,
1600061,
1609061,
1611161,
1616161,
1628261,
1630361,
1633361,
1640461,
1643461,
1646461,
1654561,
1657561,
1658561,
1660661,
1670761,
1684861,
1685861,
1688861,
1695961,
1703071,
1707071,
1712171,
1714171,
1730371,
1734371,
1737371,
1748471,
1755571,
1761671,
1764671,
1777771,
1793971,
1802081,
1805081,
1820281,
1823281,
1824281,
1826281,
1829281,
1831381,
1832381,
1842481,
1851581,
1853581,
1856581,
1865681,
1876781,
1878781,
1879781,
1880881,
1881881,
1883881,
1884881,
1895981,
1903091,
1908091,
1909091,
1917191,
1924291,
1930391,
1936391,
1941491,
1951591,
1952591,
1957591,
1958591,
1963691,
1968691,
1969691,
1970791,
1976791,
1981891,
1982891,
1984891,
1987891,
1988891,
1993991,
1995991,
1998991,
3001003,
3002003,
3007003,
3016103,
3026203,
3064603,
3065603,
3072703,
3073703,
3075703,
3083803,
3089803,
3091903,
3095903,
3103013,
3106013,
3127213,
3135313,
3140413,
3155513,
3158513,
3160613,
3166613,
3181813,
3187813,
3193913,
3196913,
3198913,
3211123,
3212123,
3218123,
3222223,
3223223,
3228223,
3233323,
3236323,
3241423,
3245423,
3252523,
3256523,
3258523,
3260623,
3267623,
3272723,
3283823,
3285823,
3286823,
3288823,
3291923,
3293923,
3304033,
3305033,
3307033,
3310133,
3315133,
3319133,
3321233,
3329233,
3331333,
3337333,
3343433,
3353533,
3362633,
3364633,
3365633,
3368633,
3380833,
3391933,
3392933,
3400043,
3411143,
3417143,
3424243,
3425243,
3427243,
3439343,
3441443,
3443443,
3444443,
3447443,
3449443,
3452543,
3460643,
3466643,
3470743,
3479743,
3485843,
3487843,
3503053,
3515153,
3517153,
3528253,
3541453,
3553553,
3558553,
3563653,
3569653,
3586853,
3589853,
3590953,
3591953,
3594953,
3601063,
3607063,
3618163,
3621263,
3627263,
3635363,
3643463,
3646463,
3670763,
3673763,
3680863,
3689863,
3698963,
3708073,
3709073,
3716173,
3717173,
3721273,
3722273,
3728273,
3732373,
3743473,
3746473,
3762673,
3763673,
3765673,
3768673,
3769673,
3773773,
3774773,
3781873,
3784873,
3792973,
3793973,
3799973,
3804083,
3806083,
3812183,
3814183,
3826283,
3829283,
3836383,
3842483,
3853583,
3858583,
3863683,
3864683,
3867683,
3869683,
3871783,
3878783,
3893983,
3899983,
3913193,
3916193,
3918193,
3924293,
3927293,
3931393,
3938393,
3942493,
3946493,
3948493,
3964693,
3970793,
3983893,
3991993,
3994993,
3997993,
3998993,
7014107,
7035307,
7036307,
7041407,
7046407,
7057507,
7065607,
7069607,
7073707,
7079707,
7082807,
7084807,
7087807,
7093907,
7096907,
7100017,
7114117,
7115117,
7118117,
7129217,
7134317,
7136317,
7141417,
7145417,
7155517,
7156517,
7158517,
7159517,
7177717,
7190917,
7194917,
7215127,
7226227,
7246427,
7249427,
7250527,
7256527,
7257527,
7261627,
7267627,
7276727,
7278727,
7291927,
7300037,
7302037,
7310137,
7314137,
7324237,
7327237,
7347437,
7352537,
7354537,
7362637,
7365637,
7381837,
7388837,
7392937,
7401047,
7403047,
7409047,
7415147,
7434347,
7436347,
7439347,
7452547,
7461647,
7466647,
7472747,
7475747,
7485847,
7486847,
7489847,
7493947,
7507057,
7508057,
7518157,
7519157,
7521257,
7527257,
7540457,
7562657,
7564657,
7576757,
7586857,
7592957,
7594957,
7600067,
7611167,
7619167,
7622267,
7630367,
7632367,
7644467,
7654567,
7662667,
7665667,
7666667,
7668667,
7669667,
7674767,
7681867,
7690967,
7693967,
7696967,
7715177,
7718177,
7722277,
7729277,
7733377,
7742477,
7747477,
7750577,
7758577,
7764677,
7772777,
7774777,
7778777,
7782877,
7783877,
7791977,
7794977,
7807087,
7819187,
7820287,
7821287,
7831387,
7832387,
7838387,
7843487,
7850587,
7856587,
7865687,
7867687,
7868687,
7873787,
7884887,
7891987,
7897987,
7913197,
7916197,
7930397,
7933397,
7935397,
7938397,
7941497,
7943497,
7949497,
7957597,
7958597,
7960697,
7977797,
7984897,
7985897,
7987897,
7996997,
9002009,
9015109,
9024209,
9037309,
9042409,
9043409,
9045409,
9046409,
9049409,
9067609,
9073709,
9076709,
9078709,
9091909,
9095909,
9103019,
9109019,
9110119,
9127219,
9128219,
9136319,
9149419,
9169619,
9173719,
9174719,
9179719,
9185819,
9196919,
9199919,
9200029,
9209029,
9212129,
9217129,
9222229,
9223229,
9230329,
9231329,
9255529,
9269629,
9271729,
9277729,
9280829,
9286829,
9289829,
9318139,
9320239,
9324239,
9329239,
9332339,
9338339,
9351539,
9357539,
9375739,
9384839,
9397939,
9400049,
9414149,
9419149,
9433349,
9439349,
9440449,
9446449,
9451549,
9470749,
9477749,
9492949,
9493949,
9495949,
9504059,
9514159,
9526259,
9529259,
9547459,
9556559,
9558559,
9561659,
9577759,
9583859,
9585859,
9586859,
9601069,
9602069,
9604069,
9610169,
9620269,
9624269,
9626269,
9632369,
9634369,
9645469,
9650569,
9657569,
9670769,
9686869,
9700079,
9709079,
9711179,
9714179,
9724279,
9727279,
9732379,
9733379,
9743479,
9749479,
9752579,
9754579,
9758579,
9762679,
9770779,
9776779,
9779779,
9781879,
9782879,
9787879,
9788879,
9795979,
9801089,
9807089,
9809089,
9817189,
9818189,
9820289,
9822289,
9836389,
9837389,
9845489,
9852589,
9871789,
9888889,
9889889,
9896989,
9902099,
9907099,
9908099,
9916199,
9918199,
9919199,
9921299,
9923299,
9926299,
9927299,
9931399,
9932399,
9935399,
9938399,
9957599,
9965699,
9978799,
9980899,
9981899,
9989899
};
int main()
{
cin >> s >> e;
for (int i = 0; i < 781; i++)
if (prime[i] >= s && prime[i] <= e)
cout << prime[i] << endl;
return 0;
}
P1217的更多相关文章
- 洛谷 P1217
题目链接如下https://www.luogu.org/problemnew/show/P1217 找出a到b 是回文数并且是素数的数. 这还不简单 前两天刚学的线性筛素数.卡卡卡卡一顿猛敲.最后一个 ...
- 洛谷 P1217 [USACO1.5]回文质数 Prime Palindrome
嗯... 这道题对于蒟蒻的我来说实在是TQL... 先看一下题:(题目链接:https://www.luogu.org/problemnew/show/P1217) 然后说一下我的做题过程吧: 一看到 ...
- P1217 [USACO1.5]回文质数 Prime Palindromes(求100000000内的回文素数)
P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...
- 洛谷 - P1217 - 回文质数 - 枚举
https://www.luogu.org/problemnew/show/P1217 考虑暴力生成所有的回文数然后再判断是不是质数.注意个位的选择实际上只有4种.所以是 $4*10^3*10^3=4 ...
- 洛谷 P1217 [USACO1.5]回文质数 Prime Palindromes
P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...
- 洛谷P1217回文质数-Prime Palindrome回溯
P1217 [USACO1.5]回文质数 Prime Palindromes 题意:给定一个区间,输出其中的回文质数: 学习了洛谷大佬的回溯写法,感觉自己写回溯的能力不是很强: #include &l ...
- 洛谷 P1217 回文质数
洛谷 P1217 回文质数 链接 https://www.luogu.org/problem/P1217 题目 题目描述 因为 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 ...
- luogu P1217 [USACO1.5]回文质数 Prime Palindromes x
P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...
- p1217晚餐(简单的dijkstra)
题目: 输入: 1000 5 61 2 3002 4 2003 4 6003 4 8005 3 1002 5 650 输出: 4 这道题呢,其实就是用邻接矩阵将每条边耗费的体力存起来,然后用dijks ...
- USACO1.4 1.5 搜索剪枝与数字 洛谷OJ P1214 P1215 P1217 P1218
USACO1.4 题解 Arithmetic Progressions 题意 让你求长为n的由小于2*m*m的双平方数组成的等差数列有几个 双平方数:形如 B=P*P+Q*Q,p,q>0的数 题 ...
随机推荐
- 快速将Navicat中数据表信息导出
1.使用navicat工具 2.新建查询 SELECT COLUMN_NAME 字段名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_L ...
- spring boot 运行错误: 找不到或无法加载主类
在项目根目录运行 mvn clean install 进行重新编译 不行的话就删了原有的启动配置,重新配置启动.
- 优酷1080p的kux格式文件转码
@echo off for /r . %%i in (*.kux) do ( "C:\Program Files (x86)\YouKu\YoukuClient\nplayer\ffmpeg ...
- js面向对象的程序设计 --- 中篇(创建对象) 之 原型模式
·原型模式 我们创建的每一个函数都由一个prototype(原型)属性,这个属性是一个指针,指向一个对象,而这个对象的用途是包含可以由特定类型的所有 实例共享的属性和方法. 如果按照字面意思来理解,那 ...
- java基础之 修饰符
一.访问修饰符 Java中,可以使用访问控制符来保护对类.变量.方法和构造方法的访问.Java 支持 4 种不同的访问权限. 1.default (即缺省,什么也不写): 在同一包内可见,不使用任何修 ...
- java 数字转换格式化
1.小数格式化后转字符串百分数(带%)输出 NumberFormat nt = NumberFormat.getPercentInstance(); //设置百分数精确度2即保留两位小数 nt.set ...
- 第三十三篇 玩转数据结构——红黑树(Read Black Tree)
1.. 图解2-3树维持绝对平衡的原理: 2.. 红黑树与2-3树是等价的 3.. 红黑树的特点 简要概括如下: 所有节点非黑即红:根节点为黑:NULL节点为黑:红节点孩子为黑:黑平衡 4.. 实现红 ...
- 简单了解一个WSDL,SOAP的格式
简单了解一个WSDL,SOAP的格式 2016-06-20 09:34:43 树先生i 阅读数 5187 收藏 更多 分类专栏: WebService 版权声明:本文为博主原创文章,遵循CC 4 ...
- 第二十五篇 玩转数据结构——链表(Linked List)
1.. 链表的重要性 我们之前实现的动态数组.栈.队列,底层都是依托静态数组,靠resize来解决固定容量的问题,而"链表"则是一种真正的动态数据结构,不需要处理固定容 ...
- hadoop fs -put could only be replicated to 0 nodes, instead of 1 解决方法
我的坏境是在虚拟机linux操作系统中,启动start-all.sh后 1.执行jps,如下 2.执行hadoop fs -mkdir input 创建成功 执行hadoop fs -ls 可以看到i ...