Matlab 图像处理相关函数命令大全

一、通用函数:

colorbar  显示彩色条

语法:colorbar \ colorbar('vert') \ colorbar('horiz') \ colorbar(h) \ h=colorbar(...) \ colorbar(...,'peer',axes_handle)

getimage 从坐标轴取得图像数据

语法:A=getimage(h) \ [x,y,A]=getimage(h) \ [...,A,flag]=getimage(h) \ [...]=getimage

imshow 显示图像

语法:imshow(I,n) \ imshow(I,[low high]) \ imshow(BW) \ imshow(X,map) \ imshow(RGB)\ imshow(...,display_option) \ imshow(x,y,A,...) \ imshow filename \ h=imshow(...)

montage 在矩形框中同时显示多幅图像

语法:montage(I) \ montage(BW) \ montage(X,map) \ montage(RGB) \ h=montage(...)

immovie 创建多帧索引图的电影动画

语法:mov=immovie(X,map) \ mov=immovie(RGB)

subimage 在一副图中显示多个图像

语法:subimage(X,map) \ subimage(I) \ subimage(BW) \  subimage(RGB) \ subimage(x,y,...) \ subimage(...)

truesize 调整图像显示尺寸

语法:truesize(fig,[mrows mcols]) \ truesize(fig)

warp 将图像显示到纹理映射表面

语法:warp(X,map) \ warp(I ,n) \ warp(z,...) warp(x,y,z,...) \  h=warp(...)

zoom 缩放图像

语法:zoom on \ zoom off \ zoom out \ zoom reset \ zoom \ zoom xon \ zoom yon\ zoom(factor) \ zoom(fig,option)

二、图像文件I/O函数命令

imfinfo  返回图形图像文件信息

语法:info=imfinfo(filename,fmt) \ info=imfinfo(filename)

imread  从图像文件中读取(载入)图像

语法:A=imread(filename,fmt) \ [X,map]=imread(filename,fmt) \ [...]=imread(filename) \ [...]=imread(URL,...) \ [...]=imread(...,idx) (CUR,ICO,and TIFF only) \ [...]=imread(...,'frames',idx) (GIF only) \ [...]=imread(...,ref) (HDF only) \ [...]=imread(...,'BackgroundColor',BG) (PNG only) \ [A,map,alpha] =imread(...) (ICO,CUR,PNG only)

imwrite  把图像写入(保存)图像文件中

语法:imwrite(A,filename,fmt) \ imwrite(X,map,filename,fmt) \ imwrite(...,filename) \ imwite(...,Param1,Val1,Param2,Val2...)

imcrop  剪切图像

语法:I2=imcrop(I) \ X2=imcrop(X,map) \ RGB2=imcrop(RGB) \ I2=imcrop(I,rect) \ X2=imcrop(RGB,rect) \ [...]=imcrop(x,y,...) \ [A,rect]=imcrop(...) \ [x,y,A,rect]=imcrop(...)

imresize  改变图像大小

语法:B=imresize(A,m,method)

imrotate  旋转图像

语法:B=imrotate(A,angle,method) \ B=imrotate(A,angle,method,'crop')

三、像素和统计处理函数

corr2  计算两个矩形的二维相关系数

语法:r=corr2(A,B)

imcontour 创建图像数据的轮廓图

语法:imcontour(I,n) \ imcontour(I,v) \ imcontour(x,y,...) \ imcontour(...,LineSpec) \ [C,h] =imcontour(...)

imfeature  计算图像区域的特征尺寸

语法:stats=imfeature(L,measurements) \ stats=imfeature(L,measurements,n)

imbist  显示图像数据的柱状图

impixel 确定像素颜色值

语法:P=impixel(I) \ P=impixel(X,map) \ P=impixel(RGB) \ P=impixel(I,c,r) \ P=impixel(X,map,c,r) \ P=impixel(RGB,c,r) \ [c,r,P]=impixel(...) \ P=impixel(x,y,I,xi,yi) \ P=impixel(x,y,RGB,xi,yi) \ P=impixel(x,y,X,map,xi,yi) \

[xi,yi,P]=impixel(x,y,...)
improfile 沿线段计算剖面图的像素值

语法:c=improfile \ c=improfile(n) \ c=improfile(I,xi,yi) \ c=improfile(I,xi,yi,n) \  [cx,cy,c]=improfile(...)  \ [cx,cy,c,xi,yi]=improfile(...) \ [...]=improfile(x,y,I,xi,yi) \  [...]=improfile(x,y,I,xi,yi,n) \ [...]=improfile(...,method)

mean2 计算矩阵元素的平均值

语法:B=mean2(A)

pixval  显示图像像素信息

语法:pixval on

std2 计算矩阵元素的标准偏移

语法:b=std2(A)

四、图像分析函数:

edge 图像边缘检测

语法:BW=edge(I,'sobel') \ BW=edge(I,'sobel',thresh) \ BW=edge(I,'sobel',thresh,direction) \ [BW,thresh]=edge(I,'sobel',...) \ BW=edge(I,'prewitt') \ BW=edge(I,'prewitt',thresh) \ BW=edge(I,'prewitt',thresh,direction) \

[BW,thresh]=edge(I,'prewitt',...) \  BW=edge(I,'roberts') \ BW=edge(I,'roberts',thresh) \[BW,thresh]=edge(I,'roberts',...) \ BW=edge(I,'log') \ BW=edge(I,'log',thresh) \ BW=edge(I,'log',thresh,sigma) \ [BW,threshold]=edge(I,'log',...) \ BW=edge(I,'zerocross',thresh,h) \ [BW,thresh]=edge(I,'zerocross',...) \

BW=edge(I,'canny') \ BW=edge(I,'canny',thresh) \ BW=edge(I,'canny',thresh,sigma) \ [BW,threshold]=edge(I,'canny',...)

qtgetblk  获取四叉树分解的块值

语法:[vals,r,c]=qtgetblk(I,S,dim) \ [vals,idx]=qtgetblk(I,S,dim)

qtsetblk 设置四叉树分解中的块值

语法:J=qtsetblk(I,S,dim,vals)

五、图像增强函数

histeq 用柱状图均等化增强对比

语法:J=histeq(I,hgram) \ J=histeq(I,n) \ [J,T]=histeq(I,...) \ newmap=histeq(X,map,hgram) \ newmap=histeq(X,map)

imadjust 调整图像灰度值或颜色映像表

语法:J=imadjust(I,[low_in ,high_in]),[low_out ,high_out],gamma) \ newmap=imadjust(map,[low_in ,high_in]),[low_out ,high_out],gamma) \ RGB2=imadjust(RGB1,...)

imnoise 增强图像的渲染效果

语法:J=imnoise(I,type) \ J=imnoise(I,type,parameters)

medfilt2 进行二维中值过滤

语法:B=medfilt2(A,[m n]) \ B=medfilt2(A) \ B=medfilt2(A,'indexed',...)

ordfilt2 进行二维统计顺序过滤

语法:B=ordfilt2(A,order,domain) \ B=ordfilt2(A,order,domain,S) \ B=ordfilt2(...,padopt)

wiener2 进行二维适应性去噪过滤处理

语法:J=wiener2(I,[m  n],noise) \ [J,noise]=wiener2(I,[m n])

六、线性滤波函数

conv2 进行二维卷积操作

语法:C=conv2(A,B) \ C=conv2(hcol,hrow,A) \ C=conv2(...,'shape')

convmtx2 计算二维卷积矩阵

语法:T=convmtx2(H,m,n) \ T=convmtx2(H,[m n])

convn 计算n维卷积

语法:C=convn(A,B) \ C=convn(A,B,'shape')

filter2 进行二维线性过滤操作

语法:Y=filter2(h,X) \ Y=filter2(h,X,shape)

fspecial 创建预定义过滤器

语法:h=fspecial(type) \ h=fspecial(type,parameters)

七、线性二维滤波设计函数

freqspace 确定二维频率响应的频率空间

语法:[f1,f2]=freqspace(n) \ [f1,f2]=freqspace([m n]) \ [x1 ,y1]=freqspace(...,'meshgrid') \ f=freqspace(N) \ f=freqspace(N,'whole')

freqz2 计算二维频率响应

语法:[H,f1,f2]=freqz2(h,n1,n2) \ [H,fi,f2]]=freqz2(h,[n2,n1]) \ [H,fi,f2]]=freqz2(h,f1,f2]) \ [H,fi,f2]]=freqz2(h) \[...]=freqz2(h,...,[dx dy]) \ [...]=freqz2(h,...,dx) \ freqz2(...)

fsamp2 用频率采样法设计二维FIR过滤器

语法:h=fsamp2(Hd) \ h=fsamp2(f1,f2,Hd,[m n])

ftrans2 通过频率转换设计二维FIR过滤器

语法:h=ftrans2(b,t) \ h=ftrans2(b)

fwind1 用一维窗口方法设计二维FIR过滤器

语法:h=fwind1(Hd,win) \ h=fwind1(Hd,win1,win2) \ h=fwind1(f1,f2,Hd,...)

fwind2 用二维窗口方法设计二维FIR过滤器

语法:h=fwind2(Hd,win) \ h=fwind2(f1,f2,Hd,win)

八、图像变换函数

dct2 进行二维离散余弦变换(反余弦变换用idct2)

语法:B=dct2(A) \ B=dct2(A,m.n) \ B=dct2(A,[m n])

dctmtx 计算离散余弦傅立叶变换

语法:D=dctmtx(n)

fft2 进行二维快速傅立叶变换(反变换用ifft2)

语法:Y=fft2(X) \ Y=fft2(X,m,n)

fftn 进行n维快速傅立叶变换(反变换用ifftn)

语法:Y=ffn(X) \ Y=fftn(X,siz)

fftshift 快速傅立叶变换的DC组件移到光谱中心

语法:Y=fftshift(X) \ Y=fftshift(X,dim)

iradon 进行反radon变换

语法:I=iradon(P,theta) \ I=iradon(P,theta,interp,filter,d,n) \ [I,h]=iradon(...)

phantom 产生一个头部幻影图像

语法:P=phantom(def,n) \ P=phantom(E,n) \ [P,E]=phantom(...)

radon 计算radon变换

语法:R=radon(I,theta) \ [R,xp]=radon(...)

九、边沿和块处理函数

bestblk 确定进行块操作的块大小

语法:siz=bestblk([m n],k) \ [mb,nb]=bestblk([m n],k)

blkproc 实现图像的显示块操作

语法:B=blkproc(A,[m n]),fun) \ B=blkproc(A,[m n],fun,P1,P2,...) \ B=blkproc(A,[m n],[mborder nborder],fun,...)

col2im 将矩阵的列重新组织到块中

语法:A=col2im(B,[m n],[mm nn],block_type) \ A=col2im(B,[m n],[mm nn])

colfilt 利用列相关函数进行边沿操作

语法:B=colfilt(A,[m n],block_type,fun) \ B=colfilt(A,[m n],block_type,fun,P1,P2,...) \ B=colfilt(A,[m n],[mblock nblock],...) \ B=colfilt(A,'indexed',...)

im2col 重调图像块为列

语法:B=im2col(A,[m n],block_type) \ B=im2col(A,[m n]) \ B=im2col(A,'indexed',...)

nlfilter 进行边沿操作

语法:B=nlfilter(A,[m n],fun) \ B=nlfilter(A,[m n],fun,P1,P2,...) \ B=nlfilter(A,'indexed',...)

十、二进制图像操作函数

applylut 在二进制图像中利用lookup表进行行边沿操作

语法:A=applylut(BW,LUT)

bwarea 计算二进制图像对象的面积

语法:total=bwarea(BW)

bweuler 计算二进制图像的欧拉数

语法:eul=bweuler(BW)

bwfill 填充二进制图像的背景色

语法:BW2=bwfill(BW1,c,r,n) \ BW2=bwfill(BW1,n) \ [BW2,idx]=bwfill(...) \ BW2=bwfill(x,y,BW1,xi,yi,n) \ [x,y,BW2,idx,xi,yi]=bwfill(...) \  [BW2,idx]=bwfill(BW1,'holes',n)

bwlabel 标注二进制图像中已连接的部分

语法:L=bwlabel(BW,n) \ [L,num]=bwlabel(BW,n)

bwmorph 提取二进制图像的轮廓

语法:BW2=bwmorph(BW1,operation) \ BW2=bwmorph(BW1,operation,n)

bwperim 计算二进制图像中对象的周长

语法:BW2=bwperim(BW1) \ BW2=bwperim(BW1,CONN)

bwselect 在二进制图像中选择对象

语法:BW2=bwselect(BW1,c,r,n) \ BW2=bwselect(BW1,n) \ [BW2,idx]=bwselect(...) \ BW2=bwselect(x,y,BW1,xi,yi,n) \ [x,y,BW2,idx,xi,yi]=bwselect(...)

dilate 放大二进制图像

语法:BW2=dilate(BW1,SE) \ BW2=dilate(BW1,SE,alg) \ BW2=dilate(BW1,SE,...,n)

erode 弱化二进制图像的边界

语法:BW2=erode(BW1,SE) \ BW2=erode(BW1,SE,alg) \ BW2=erode(BW1,SE,...,n)

makelut 创建一个用于applylut函数的lookup表

语法:lut=makelut(fun,n) \ lut=makelut(fun,n,P1,P2,...)

十一、区域处理函数

roicolor 选择感兴趣的颜色区

语法:BW=roicolor(A,low,high) \ BW=rocicolor(A,v)

roifill 在图像的任意区域中进行平滑插补

语法:J=roifill(I,c,r) \ J=roifill(I) \ J=roifill(I,BW) \ [J,BW]=roifill(...) \ J=roifill(x,y,I,xi,yi) \ [x,y,J,BW,xi,yi]=roifill(...)

roifilt2 过滤敏感区域

语法:J=roifilt2(h,I,BW) \ J=roifilt2(I,BW,fun) \ J=roifilt2(I,BW,fun,P1,P2,...)

roipoly 选择一个敏感的多边形区域

语法:BW=roipoly(I,c,r) \ BW=roipoly(I) \ BW=roipoly(x,y,I,xi,yi) \ [BW,xi,yi]=roipoly(...) \ [x,y,BW,xi,yi]=roipoly(...)

十二、颜色映像处理函数

brighten 增加或降低颜色映像表的亮度

语法:brighten(beta) \ brighten(h,beta) \ newmap=brighten(beta) \ newmap=brighten(cmap,beta)

cmpermute 调整颜色映像表中的颜色

语法:[Y,newmap]=cmpermute(X,map) \ [Y,newmap]=cmpermute(X,map,index)

cmunigue 查找颜色映像表中特定的颜色及相应的图像

语法:[Y,newmap]=cmunigue(X,map) \ [Y,newmap]=cmunigue(RGB) \ [Y,newmap]=cmunique(I)

imapprox 对索引图像进行近似处理

语法:[Y,newmap]=imapprox(X,map,n) \  [Y,newmap]=imapprox(X,map,tol) \ Y=imapprox(X,map,newmap) \[...]=imapprox(...,dither_option)

rgbplot 划分颜色映像表

语法:rgbplot(cmap)

十三、颜色空间转换函数

hsv2rgb 转换HSV值为RGB颜色空间:M=hsv2rgb(H)

ntsc2rgb 转换NTSC值为RGB颜色空间:rgbmap=ntsc2rgb(yiqmap) \ RGB=ntsc2rgb(YIQ)

rgb2hsv 转换RGB值为HSV颜色空间:cmap=rgb2hsv(M)

rgb2ntsc 转换RGB值为NTSC颜色空间:yiqmap=rgb2ntsc(rgbmap) \ YIQ=rgb2ntsc(RGB)

rgb2ycbcr 转换RGB值为YCbCr颜色空间:ycbcrmap=rgb2ycbcr(rgbmap) \ YCBCR=rgb2ycbcr(RGB)

ycbcr2rgb 转化YCbCr值为RGB颜色空间:rgbmap=ycbcr2rgb(ycbcrmap) \ RGB=ycbcr2rgb(YCBCR)

十四、图像类型和类型转换函数

dither 通过抖动增加外观颜色分辨率转换图像

语法:X=dither(RGB,map) \ BW=dither(I)

gray2ind 转换灰度图像为索引图像

语法:[X,map]=gray2ind(I,n) \ [X,map]=gray2ind(BW,n)

grayslice 从灰度图像为索引图像

语法:X=grayslice(I,n) \ X=grayslice(I,v)

im2bw 转换图像为二进制图像

语法:BW=im2bw(I,level) \ BW=im2bw(X,map,level) \ BW=im2bw(RGB,level)

im2double 转换图像矩阵为双精度型

语法:I2=im2double(I1) \ RGB2=im2double(RGB1) \ I=im2double(BW) \ X2=im2double(X1,'indexed')

double 转换数据为双精度型

语法:double(X)

unit8 、unit16转换数据为8位、16位无符号整型: i=unit8(x) \ i=unit16(x)

im2unit8 转换图像阵列为8位无符号整型

语法:I2=im2unit8(I1) \ RGB2=im2unit8(RGB1) \ I=im2unit8(BW) \ X2=im2unit8(X1,'indexed')

im2unit16 转换图像阵列为16位无符号整型

语法:I2=im2unit16(I1) \ RGB2=im2unit16(RGB1) \ I=im2unit16(BW) \ X2=im2unit16(X1,'indexed')

ind2gray 把检索图像转化为灰度图像

语法:I=ind2gray(X,map)

ind2rgb  转化索引图像为RGB真彩图像

语法:RGB=ind2rgb(X,map)

isbw 判断是否为二进制图像

语法:flag=isbw(A)

isgray 判断是否为灰度图像

语法:flag=isgray(A)

isind 判断是否为索引图像

语法:flag=isind(A)

isrgb 判断是否为RGB真彩色图像

语法:flag=isrgb(A)

mat2gray 转换矩阵为灰度图像

语法:I=mat2gray(A,[amin amax]) \ I=mat2gray(A)

rgb2gray 转换RGB图像或颜色映像表为灰度图像

语法:I=rgb2gray(RGB) \ newmap=rgb2gray(map)

rgb2ind 转换RGB图像为索引图像

语法:[X,map]=rgb2ind(RGB,tol) \ [X,map]=rgb2ind(RGB,n) \ X=rgb2ind(RGB,map) \ [...]=rgb2ind(...,dither_option)

十五、新增图像处理工具箱函数

adapthisteq 限制对比度直方图均衡化: J=adapthisteq(I) \ J=adapthisteq(I,param1,val1,param2,val2...)

applycform 用于颜色空间变换 out=applyform(I,C)

bwboundaries 描绘二进制图像边界

语法: B=bwboundaries(BW) \ B=bwboundaries(BW,CONN) \ B=bwboundaries(BW,CONN,options) [BW,CONN,options] \ [BL]=bwboundaries(...) \ [BLNA]=bwboundaries()

bwtraceboundary 描述二进制图像中的物体

B=bwtraceboundary(BW,P,fstep) \ B=bwtraceboundary(BW,P,fstep,CONN) \ B=bwtraceboundary(...N,dir)

decorrstrech 对多通道图像进行去相关处理

语法:S=decorrstretch(I) \ S=decorrstretch(I,TOL)

dicomdict 获取或读取DICOM文件

语法:dicomdict('set',dictionary) \ dictionary=dicomdict('get')

getline 用鼠标选择ployline

语法:[x,y]=getline(fig) \ [x,y]=getline(ax) \ [x,y]=getline \ [x,y]=getline(...,'closed')

getpts 用鼠标选择像素点

语法:[x,y]=getpts(fig) \ [x,y]=getpts(ax) \ [x,y]=getpts

getrect 用鼠标选择矩阵

语法:rect=getrect(fig) \ rect=getrect(ax) \ rect=getrect(fig)

iccread 读取ICC剖面

语法:P=iccread(filename)

im2java2d 将图像转换为Java缓冲图像

语法:jimage=im2java2d(I) \ jimage=im2java2d(X,MAP)

imview 在图像与蓝旗中显示图像

语法:imview(I) \  imview(RGB) \ imview(X,map) \imview(I,range) \ imview(filename) \ imview(....'InitialMagnification',initial_mag) \ h=imview(...)  \  imview close all

ippl 检查IPPL的存在

语法:TF=ippl \ [TF B]=ippl

iptdemos 显示图像处理工具箱中的索引图像

lab2double、lab2unit16、lab2unit8 将L*a*b数据分别转换为双精度、16位数据、8位数据

makecform 创造一个色彩转换结构

poly2mask 把多边形区域转换成mask区域

语法:BW=poly2mask(x,y,m,n)

unitlut 查找表中A像素值

语法:B=unitlut(A,LUT)

xyz2double、xyz2unit16 将颜色数据从XYZ转换到双精度、16进制。

语法:xyzd=xyz2double(XYZ) \ xyz16=xyz2unit16(xyz)

学习笔记(2)---Matlab 图像处理相关函数命令大全的更多相关文章

  1. Linux防火墙iptables学习笔记(三)iptables命令详解和举例[转载]

     Linux防火墙iptables学习笔记(三)iptables命令详解和举例 2008-10-16 23:45:46 转载 网上看到这个配置讲解得还比较易懂,就转过来了,大家一起看下,希望对您工作能 ...

  2. ARM9嵌入式学习笔记(1)-Linux命令

    ARM9嵌入式学习笔记(1)-Linux命令 实验1-1-2 Linux常见命令使用 添加用户useradd smb; 设置账户密码passwd smb; 切换用户su - root 关机命令shut ...

  3. Linux学习笔记(3)-常用命令

    江湖传言,Linux和Windows不同,他主要的用途是在一些服务器,或者片内系统上,所以人机交互界面自然就没有Windows那么漂亮,其实也没有那个必要. 所以,学习Linux的第一步,就是学习他那 ...

  4. Linux 学习笔记 更多的bash shell命令

    一  监测程序 1.ps 输出运行在系统上的所有程序的许多信息 运行ps命令,也会开启一个进程 默认情况下,ps命令只会显示运行在当前控制台下的属于当前用户的进程. Unix风格的参数(单破折号) - ...

  5. Noah的学习笔记之Python篇:命令行解析

    Noah的学习笔记之Python篇: 1.装饰器 2.函数“可变长参数” 3.命令行解析 注:本文全原创,作者:Noah Zhang  (http://www.cnblogs.com/noahzn/) ...

  6. Go学习笔记(五)Go命令工具

    上篇Go学习笔记(四)Go自动化测试框架 1.go build 这个命令可以直接使用,也可以带上代码包或源码文件使用. 如果是直接使用,表示试图编译当前目录所对应的代码包,如果当前目录不是一个有效的代 ...

  7. go学习笔记二:运行使用命令行参数

    本文只作为博主的go语言学习笔记. 对命令行参数的解析,只是在运行时使用的,比如以下命令:go run gomain -conf conf.toml 没有办法再go build时使用. 一.运行时命令 ...

  8. Linux学习总结(1)——Linux命令大全完整版

    Linux命令大全完整版 目    录I 1. linux系统管理命令1 adduser1 chfn(change finger information)1 chsh(change shell)1 d ...

  9. 嵌入式Linux学习笔记(0)基础命令。——Arvin

    学习记录: 到今天为止ARM裸机开发学习进程:1.2.1-1.2.14 预科班知识Linux介绍学习进程:0.2.1-0.2.6 学习内容笔记: 学习了Linux的开发方式的优劣介绍 学习了常用文件夹 ...

随机推荐

  1. python的functools.partial的应用

    functools.partial是类似于创造“可移动”函数的意思,参数的第一个是函数名,其他的是这个函数其他参数,例如: generator_func = functools.partial( tf ...

  2. vue题目

    1.active-class是哪个组件的属性?嵌套路由怎么定义?答:vue-router模块的router-link组件. 2.怎么定义vue-router的动态路由?怎么获取传过来的动态参数? 答: ...

  3. vue 生产环境和测试环境的配置

    我们引用的是axios 给src目录增加 api 文件夹 里面写上index.js // 配置API接口地址 var root = process.env.API_ROOT // 引用axios va ...

  4. 使用由 Python 编写的 lxml 实现高性能 XML 解析

    lxml 简介 Python 从来不出现 XML 库短缺的情况.从 2.0 版本开始,它就附带了 xml.dom.minidom 和相关的 pulldom 以及 Simple API for XML ...

  5. NOIP2017普及组翻车记

    我就是一个这么个人:平常训练好好的,一到考场就炸. 不管是NOIP还是考试都是这样. 比赛时我脑抽,第二题相减后,居然一点一点地模10. 后来觉得很慢,用近乎一个小时时间,打了另一个方法(不是字典树, ...

  6. 【python之路44】tornado的用法 (二)

    参考:https://www.cnblogs.com/sunshuhai/articles/6253815.html 一.代码目录构建 代码目录设置如下图: #!/usr/bin/env python ...

  7. PAT甲级——A1063 Set Similarity

    Given two sets of integers, the similarity of the sets is defined to be /, where N​c​​ is the number ...

  8. ubuntu下编译安装poco

    系统环境: ubuntu版本:Linux jfcai-VirtualBox 4.15.0-29-generic #31-Ubuntu SMP Tue Jul 17 15:39:52 UTC 2018 ...

  9. pycharm新手入门

    1.新建项目 2.配置 3.create 4.新建.py文件 5.可以愉快的敲代码啦

  10. Win3.2有人用过么

    老牌子的操作系统. 了,有人用过么,我还在用,感觉挺不错的,哈哈哈哈哈.   1.0那一代,画面粗糙,几乎不能算GUI操作系统.   2.0,画面较1.0一代明显改善,可惜的是,手头没货.   3.0 ...