Excel  exp12_3_2.xls内容:

ANT_VRP函数:

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ANT_VRP(D,Demand,Cap,iter_max,m,Alpha,Beta,Rho,Q)

%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%% L_ave 各代平均距离
%% Shortest_Route 最短路径
%% Shortest_Length 最短路径长度
%% D 城市间之间的距离矩阵,为对称矩阵
%% Demand 客户需求量
%% Cap 车辆最大载重
%% iter_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数 n=size(D,1);
T=zeros(m,2*n); %装载距离
Eta=ones(m,2*n); %启发因子
Tau=ones(n,n); %信息素
Tabu=zeros(m,n); %禁忌表
Route=zeros(m,2*n); %路径
L=zeros(m,1); %总路程
L_best=zeros(iter_max,1); %各代最佳路线长度
R_best=zeros(iter_max,2*n); %各代最佳路线
nC=1; while nC<=iter_max %停止条件
Eta=zeros(m,2*n);
T=zeros(m,2*n);
Tabu=zeros(m,n);
Route=zeros(m,2*n);
L=zeros(m,1); %%%%%%==============初始化起点城市(禁忌表)====================
for i=1:m
Cap_1=Cap; %最大装载量
j=1;
j_r=1;
while Tabu(i,n)==0
T=zeros(m,2*n); %装载量加载矩阵
Tabu(i,1)=1; %禁忌表起点位置为1
Route(i,1)=1; %路径起点位置为1
visited=find(Tabu(i,:)>0); %已访问城市
num_v=length(visited); %已访问城市个数
J=zeros(1,(n-num_v)); %待访问城市加载表
P=J; %待访问城市选择概率分布
Jc=1; %待访问城市选择指针
for k=1:n %城市
if length(find(Tabu(i,:)==k))==0 %如果k不是已访问城市代号,就将k加入矩阵J中
J(Jc)=k;
Jc=Jc+1;
end
end %%%%%%%=============每只蚂蚁按照选择概率遍历所有城市================== for k=1:n-num_v %待访问城市 if Cap_1-Demand(J(1,k),1)>=0 %如果车辆装载量大于待访问城市需求量 if Route(i,j_r)==1 %如果每只蚂蚁在起点城市
T(i,k)=D(1,J(1,k));
P(k)=(Tau(1,J(1,k))^Alpha)*((1/T(i,k))^Beta); %概率计算公式中的分子
else %如果每只蚂蚁在不在起点城市
T(i,k)=D(Tabu(i,j),J(1,k));
P(k)=(Tau(Tabu(i,visited(end)),J(1,k))^Alpha)*((1/T(i,k))^Beta); %概率计算公式中的分子
end else %如果车辆装载量小于待访问城市需求量
T(i,k)=0;
P(k)=0;
end
end if length(find(T(i,:)>0))==0 %%%当车辆装载量小于待访问城市时,选择起点为1
Cap_1=Cap;
j_r=j_r+1;
Route(i,j_r)=1;
L(i)=L(i)+D(1,Tabu(i,visited(end)));
else
P=P/(sum(P)); %按照概率原则选取下一个城市
Pcum=cumsum(P); %求累积概率和:cumsum([1 2 3])=1 3 6,目的在于使得Pcum的值总有大于rand的数
Select=find(Pcum>rand); %按概率选取下一个城市:当累积概率和大于给定的随机数,则选择求和被加上的最后一个城市作为即将访问的城市
o_visit=J(1,Select(1)); %待访问城市
j=j+1;
j_r=j_r+1;
Tabu(i,j)=o_visit; %待访问城市
Route(i,j_r)=o_visit;
Cap_1=Cap_1-Demand(o_visit,1); %车辆装载剩余量
L(i)=L(i)+T(i,Select(1)); %路径长度
end
end
L(i)=L(i)+D(Tabu(i,n),1); %%路径长度
end L_best(nC)=min(L); %最优路径为距离最短的路径
pos=find(L==min(L)); %找出最优路径对应的位置:即为哪只蚂蚁
R_best(nC,:)=Route(pos(1),:); %确定最优路径对应的城市顺序
L_ave(nC)=mean(L)'; %求第k次迭代的平均距离 Delta_Tau=zeros(n,n); %Delta_Tau(i,j)表示所有蚂蚁留在第i个城市到第j个城市路径上的信息素增量
L_zan=L_best(1:nC,1);
post=find(L_zan==min(L_zan));
Cities=find(R_best(nC,:)>0);
num_R=length(Cities); for k=1:num_R-1 %建立了完整路径后在释放信息素
Delta_Tau(R_best(nC,k),R_best(nC,k+1))=Delta_Tau(R_best(nC,k),R_best(nC,k+1))+Q/L_best(nC);
end
Delta_Tau(R_best(nC,num_R),1)=Delta_Tau(R_best(nC,num_R),1)+Q/L_best(nC);
Tau=Rho*Tau+Delta_Tau; nC=nC+1;
end
Shortest_Route=zeros(1,2*n); %提取最短路径
Shortest_Route(1,:)=R_best(iter_max,:);
Shortest_Route=Shortest_Route(Shortest_Route>0);
Shortest_Route=[Shortest_Route Shortest_Route(1,1)];
Shortest_Length=min(L_best); %提取最短路径长度
%L_ave=mean(L_best);

  求解程序:

clc;clear all
%% ==============提取数据==============
[xdata,textdata]=xlsread('exp12_3_2.xls'); %加载20个城市的数据,数据按照表格中位置保存在Excel文件exp12_3_1.xls中
x_label=xdata(:,2); %第二列为横坐标
y_label=xdata(:,3); %第三列为纵坐标
Demand=xdata(:,4); %第四列为需求量
C=[x_label y_label]; %坐标矩阵
n=size(C,1); %n表示节点(客户)个数
%% ==============计算距离矩阵==============
D=zeros(n,n); %D表示完全图的赋权邻接矩阵,即距离矩阵D初始化
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; %计算两城市之间的距离
else
D(i,j)=0; %i=j, 则距离为0;
end
D(j,i)=D(i,j); %距离矩阵为对称矩阵
end
end
Alpha=1;Beta=5;Rho=0.75;iter_max=100;Q=10;Cap=1;m=20; %Cap为车辆最大载重
[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ANT_VRP(D,Demand,Cap,iter_max,m,Alpha,Beta,Rho,Q); %蚁群算法求解VRP问题通用函数,详见配套光盘
Shortest_Route_1=Shortest_Route-1 %提取最优路线
Shortest_Length %提取最短路径长度 %% ==============作图==============
figure(1) %作迭代收敛曲线图
x=linspace(0,iter_max,iter_max);
y=L_best(:,1);
plot(x,y);
xlabel('迭代次数'); ylabel('最短路径长度'); figure(2) %作最短路径图
plot([C(Shortest_Route,1)],[C(Shortest_Route,2)],'o-');
grid on
for i =1:size(C,1)
text(C(i,1),C(i,2),[' ' num2str(i-1)]);
end
xlabel('客户所在横坐标'); ylabel('客户所在纵坐标');

  

蚁群算法MATLAB解VRP问题的更多相关文章

  1. 蚁群算法MATLAB解TSP问题

    Excel表exp12_3_1.xls中数据为: clc clear all [xdata,textdata]=xlsread('exp12_3_1.xls'); %加载20个城市的数据,数据按照表格 ...

  2. 蚁群算法matlab实现

    大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang 以下用matlab实现蚁群算法:   %蚂蚁算法test   %用产生的一个圆上的十个点来检验蚂蚁 ...

  3. 蚁群算法 matlab程序(已执行)

    下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处. 我经过改动添加了凝视,已经执行过,无误, function [R_best,L_best,L_av ...

  4. 蚁群算法和简要matlab来源

    1 蚁群算法原理 从1991由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于群体的模拟进化算法--蚁群优化.极大关注,蚁群算法的特 ...

  5. 蚁群算法求解旅行商问题(附c和matlab源代码)

    前几天写了个模拟退火算法的程序,然后又陆陆续续看了很多群智能算法,发现很多旅行商问题都采用蚁群算法来求解,于是开始写蚁群算法的模板.网上关于蚁群算法的理论很多就不再这里赘述了,下面直接上代码和进行简单 ...

  6. [matlab] 8.蚁群算法解决TSP问题

    城市坐标数据下载  密码:07d5 求遍历这52座城市后最后回到最初城市的最短距离 %% 第9章 蚁群算法及MATLAB实现——TSP问题 % 程序9-1 %% 数据准备 % 清空环境变量 clear ...

  7. ACS蚁群算法求解对称TSP旅行商问题的JavaScript实现

    本来以为在了解蚁群算法的基础上实现这道奇怪的算法题并不难,结果实际上大相径庭啊.做了近三天时间,才改成现在这能勉强拿的出手的模样.由于公式都是图片,暂且以截图代替那部分内容吧,mark一记. 1 蚁群 ...

  8. 蚁群算法(Java)tsp问题

      1.理论概述 1.1.TSP问题 旅行商问题,即TSP问题(旅行推销员问题.货郎担问题),是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只 ...

  9. 蚁群算法求解TSP问题

    一.蚁群算法简介 蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法:蚂蚁在运动过程中,能够在它所经过的路径上留下信息素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知 ...

随机推荐

  1. Python学习day45-数据库(总结)

    figure:last-child { margin-bottom: 0.5rem; } #write ol, #write ul { position: relative; } img { max- ...

  2. mybatis和hibernate的特点

    第一方面:开发速度的对比 就开发速度而言,Hibernate的真正掌握要比Mybatis来得难些.Mybatis框架相对简单很容易上手,但也相对简陋些.个人觉得要用好Mybatis还是首先要先理解好H ...

  3. springboot2配置druid数据库连接池

    注意配置以下的依赖: <!-- 引入druid数据源--> <dependency> <groupId>com.alibaba</groupId> &l ...

  4. hdu4764

    hdu4764bash博弈主要是找准必胜状态,以及好好理解题意.这里的必胜状态是n-1,虽然是写的数比上一个大1到k,但是相当于这个人拿1到k,然后是累加的效果 #include<iostrea ...

  5. Python实现单神经元分类图片的训练

    1.加载包和数据 numpy is the fundamental package for scientific computing with Python. h5py is a common pac ...

  6. BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸

    神奇的dp优化. 考虑6维状态的dp,分别表示三行高和宽,显然MLE&&TLE. 把高排个序,从大到小往架上放,那么若不是重开一行便对高度没有影响. 然后求出宽度的sum,dp[i][ ...

  7. PHP基于openssl实现的非对称加密操作

    使用非对称加密主要是借助openssl的公钥和私钥,用公钥加密私钥解密,或者私钥加密公钥解密. 1.安装openssl和php的openssl扩展 2.生成私钥:openssl genrsa 用于生成 ...

  8. Linux Shell脚本经典案例

    开头加解释器:#!/bin/bash    语法缩进,使用四个空格:多加注释说明.    命名建议规则:变量名大写.局部变量小写,函数名小写,名字体现出实际作用.    默认变量是全局的,在函数中变量 ...

  9. 11.5 临近csp·道别

    差不多到写这个东西的时候了? 嗯,按今天的日期来算的话,还有不到十天就是csp.感觉对我这种家伙来说应该算是终结了? 放在之前的话肯定会写很多东西的,不过现在大约有点不知道写什么比较合适. 所以只是祝 ...

  10. id 工具: 查询用户所对应的UID 和GID 及GID所对应的用户组

    id 工具是用来查询用户信息,比如用户所归属的用户组,UID 和GID等:id 用法极为简单:我们举个例子说明一下: 语法格式: id  [参数]  [用户名] 至于有哪些参数,自己查一下 id -- ...