The 10th Shandong Provincial Collegiate Programming Contest H.Tokens on the Segments(贪心+优先级队列 or 贪心+暴力)
•题意
二维平面上有 n 条线段,每条线段坐标为 $(l_i,i),(r_i,i)$;
平面上的每个整点坐标上都可以放置一枚硬币,但是要求任意两枚硬币的横坐标不相同;
问最多有多少条线段可以放置硬币。
•题解1
考虑到当 $X=x$ 时,最多有一条线段可以放置一枚硬币;
那么,我们可以从左到右查找最多有多少条线段可以放置硬币;
定义变量 $X$ 表示 $[0,X]$ 位置已放置好硬币;
既然是按照 $x$ 来的,那么我们就需要将所有可能可以放置硬币的线段按照 $l$ 升序排列,如果 $l$ 相同,按照 $r$ 升序排列;
考虑用优先级队列,首先将所有线段放入优先级队列 $q$ 中,并定义 $X=0$;
每次选择从 $q$ 的队头取出 $l$ 小的线段,判断这条线段的 $l'$ 与 $X$ 的位置关系:
①如果 $l' \leq X$,说明当前这条线段的 $[l',X]$ 位置 不能放置硬币,只能考虑 $[X+1,r']$ 位置是否还可以放置硬币;
那么,此时,我们就将 $[X+1,r_i]$ 丢到 $q$ 中,代表可能从 $[X+1,r']$ 中选择某位置放置硬币;
②如果 $l' > X$,说明 $[X,l')$ 间无可放置硬币的线段,那么我们要选择一枚硬币放置在 $l'$ 处,即当前这条线段上,并更新 $X=l'$;
•Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+; int n;
struct Heap
{
int l,r;
bool operator < (const Heap &obj)const
{
if(l != obj.l)
return l > obj.l;
return r > obj.r;
}
};
priority_queue<Heap >q; int Solve()
{
int X=;
int ans=;
while(!q.empty())
{
Heap tmp=q.top();
q.pop(); /**
如果 tmp.l <= X,那么[tmp.l,X]是已求出最解的位置
但是[X+1,tmp.r] 还是没有放置硬币的
所以当前线段还是有可能在[X+1,tmp.rr]区间放置一枚硬币的
所以将其加入到q中
*/
if(tmp.l <= X && X+ <= tmp.r)
q.push({X+,tmp.r});
else if(tmp.l > X)///如果tmp.l > X,更新ans,X
{
ans++;
X=tmp.l;
}
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
while(!q.empty())
q.pop(); scanf("%d",&n);
for(int i=;i <= n;++i)
{
int l,r;
scanf("%d%d",&l,&r);
q.push({l,r});
}
printf("%d\n",Solve());
}
return ;
}
•题解2
贪心+暴力
贪心策略:按 $r$ 从小到大排,$r$ 相同按 $l$ 从小到大排;
从 1~n 遍历每个线段,对于第 i 条线段,暴力查找 $[l,r]$ 最左的为放置硬币的空位置;
•Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
const int maxn=1e5+; int n;
set<int >_set;
struct Date
{
int l,r;
int len;
bool operator < (const Date &obj) const
{
return r < obj.r;
}
}_date[maxn]; int Solve()
{
sort(_date+,_date+n+);
_set.clear(); int ans=;
for(int i=;i <= n;++i)
{
int l=_date[i].l;
int r=_date[i].r;
for(int j=l;j <= r;++j)
{
if(_set.find(j) == _set.end())///查找第i条线段可以放置硬币的最左的位置
{
_set.insert(j);
ans++;
break;
}
}
}
return ans;
}
int main()
{
int test;
scanf("%d",&test);
while(test--)
{
scanf("%d",&n);
for(int i=;i <= n;++i)
{
scanf("%d%d",&_date[i].l,&_date[i].r);
_date[i].len=_date[i].r-_date[i].l+;
}
printf("%d\n",Solve());
}
return ;
}
•题解2分析
如果输入 1e5 个线段,所有线段的左右端点全部为 [1,1e9];
那么,这个算法的时间复杂度为 O(n2logn);
这个时间复杂度在打比赛的时候是不敢想的啊;
虽然不能说是正解,但可以借鉴一下其贪心的思路(tql);
•疑惑
这道题在离散化后跑一边方法①的代码wa了???
感觉,离散化后不影响结果啊??
The 10th Shandong Provincial Collegiate Programming Contest H.Tokens on the Segments(贪心+优先级队列 or 贪心+暴力)的更多相关文章
- The 10th Shandong Provincial Collegiate Programming Contest(11/13)
$$The\ 10th\ Shandong\ Provincial\ Collegiate\ Programming\ Contest$$ \(A.Calandar\) 签到 //#pragma co ...
- The 10th Shandong Provincial Collegiate Programming Contest
目录 Contest Info Solutions A. Calandar B. Flipping Game C. Wandering Robot D. Game on a Graph E. BaoB ...
- The 10th Shandong Provincial Collegiate Programming Contest 2019山东省赛游记+解题报告
比赛结束了几天...这篇博客其实比完就想写了...但是想等补完可做题顺便po上题解... 5.10晚的动车到了济南,没带外套有点凉.酒店还不错. 5.11早上去报道,济南大学好大啊...感觉走了一个世 ...
- The 10th Zhejiang Provincial Collegiate Programming Contest
Applications http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5008 string set 专场 #include& ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest May Day Holiday
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5500 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Capture the Flag
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5503 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Team Formation
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5494 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Beauty of Array
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5496 The 12th Zhejiang Provincial ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Lunch Time
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5499 The 12th Zhejiang Provincial ...
随机推荐
- sas信用评分之第二步变量筛选
sas信用评分之第二步变量筛选 今天介绍变量初步选择.这部分的内容我就只介绍information –value,我这次做的模型用的逻辑回归,后面会更新以基尼系数或者信息熵基础的筛选变量,期待我把. ...
- 对象无法注册到Spring容器中,手动从spring容器中拿到我们需要的对象
当前对象没有注册到spring容器中,此时无法new object() 的方式创建对象,否则所有@Autowired 注入的对象都为null; 处理方式: 手动创建一个类@Component注册到S ...
- 元素的高度(基于vue)
const viewH =el.target.offsetHeight;//可见高度 const contentH =el.target.scrollHeight;//内容高度 const scrol ...
- element-ui select 二级联动
在使用select 选择框时,2个select 怎么关联在一起(第一个值发生变化,第二个select值随第一个变化而不同) 两个输入框代码 <el-form :inline="tru ...
- php后端语言的基本语法
<?php$num = 1;//php中定义一个变量echo $num;//php中打印一个值(与console.log类似)$arr = array(1,2,3,4,5,6,7,89);//在 ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛: B. Coin 【概率题】【数论】
Bob has a not even coin(就是一个不均匀的硬币,朝上的概率不一定是1/2), every time he tosses the coin, the probability tha ...
- 17-2 orm单表操作和多表操作
参考:https://www.cnblogs.com/liwenzhou/p/8660826.html 一 ORM单表操作 1 增删改查 1. 查询 1. 查所有 models.Publisher. ...
- laravel5.4 发送SMTP邮件
https://blog.csdn.net/qq_35843527/article/details/77880631 Lumen / Laravel 5.4 使用网易邮箱 SMTP 发送邮件 获取网易 ...
- ]ubuntu开机自动挂载的ntfs硬盘的权限问题
原文地址:ubuntu开机自动挂载的ntfs硬盘的权限问题 在linux操作系统中, 挂载是一个非常重要的功能,使用非常频繁. 它指将一个设备(通常是存储设备)挂接到一个已存在的目录上. (这个目录可 ...
- web项目的文件上传和 下载
文件上传和下载在web应用中非常普遍,要在jsp环境中实现文件上传功能是非常容易的,因为网上有许多用Java开发的文件上传组件,本文以commons-fileupload组件为例,为jsp应用添加文件 ...