这是https://zhuanlan.zhihu.com/p/25572330的学习笔记。

  • Tensors

Tensors和numpy中的ndarrays较为相似, 因此Tensor也能够使用GPU来加速运算。

from __future__ import print_function
import torch
x = torch.Tensor(5, 3) # 构造一个未初始化的5*3的矩阵
x = torch.rand(5, 3) # 构造一个随机初始化的矩阵
x # 此处在notebook中输出x的值来查看具体的x内容
x.size() #NOTE: torch.Size 事实上是一个tuple, 所以其支持相关的操作*
y = torch.rand(5, 3) #此处 将两个同形矩阵相加有两种语法结构
x + y # 语法一
torch.add(x, y) # 语法二 # 另外输出tensor也有两种写法
result = torch.Tensor(5, 3) # 语法一
torch.add(x, y, out=result) # 语法二
y.add_(x) # 将y与x相加 # 特别注明:任何可以改变tensor内容的操作都会在方法名后加一个下划线'_'
# 例如:x.copy_(y), x.t_(), 这俩都会改变x的值。 #另外python中的切片操作也是资次的。
x[:,1] #这一操作会输出x矩阵的第二列的所有值

http://pytorch.org/docs/master/torch.html

tensors的100+种用法。

  • CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
  • Numpy桥

    将Torch的Tensor和numpy的array相互转换简直就是洒洒水啦。注意Torch的Tensor和numpy的array会共享他们的存储空间,修改一个会导致另外的一个也被修改。

# 此处演示tensor和numpy数据结构的相互转换
a = torch.ones(5)
b = a.numpy() # 此处演示当修改numpy数组之后,与之相关联的tensor也会相应的被修改
a.add_(1)
print(a)
print(b) # 将numpy的Array转换为torch的Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b) # 另外除了CharTensor之外,所有的tensor都可以在CPU运算和GPU预算之间相互转换
# 使用CUDA函数来将Tensor移动到GPU上
# 当CUDA可用时会进行GPU的运算
if torch.cuda.is_available():
x = x.cuda()
y = y.cuda()
x + y

PyTorch中的神经网络

接下来介绍pytorch中的神经网络部分。PyTorch中所有的神经网络都来自于autograd包

首先我们来简要的看一下,之后我们将训练我们第一个的神经网络。

Autograd: 自动求导

autograd 包提供Tensor所有操作的自动求导方法。
这是一个运行时定义的框架,这意味着你的反向传播是根据你代码运行的方式来定义的,因此每一轮迭代都可以各不相同。

以这些例子来讲,让我们用更简单的术语来看看这些特性。

  • autograd.Variable 这是这个包中最核心的类。 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度。

你可以通过属性 .data 来访问原始的tensor,而关于这一Variable的梯度则集中于 .grad 属性中。

  • 还有一个在自动求导中非常重要的类 Function。

Variable 和 Function 二者相互联系并且构建了一个描述整个运算过程的无环图。每个Variable拥有一个 .creator 属性,其引用了一个创建Variable的 Function。(除了用户创建的Variable其 creator 部分是 None)。

如果你想要进行求导计算,你可以在Variable上调用.backward()。 如果Variable是一个标量(例如它包含一个单元素数据),你无需对backward()指定任何参数,然而如果它有更多的元素,你需要指定一个和tensor的形状想匹配的grad_output参数。

from torch.autograd import Variable
x = Variable(torch.ones(2, 2), requires_grad = True)
y = x + 2
y.creator # y 是作为一个操作的结果创建的因此y有一个creator
z = y * y * 3
out = z.mean() # 现在我们来使用反向传播
out.backward() # out.backward()和操作out.backward(torch.Tensor([1.0]))是等价的
# 在此处输出 d(out)/dx
x.grad

最终得出的结果应该是一个全是4.5的矩阵。设置输出的变量为o。我们通过这一公式来计算:

,因此,,最后有

你可以使用自动求导来做许多疯狂的事情。

x = torch.randn(3)
x = Variable(x, requires_grad = True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
gradients = torch.FloatTensor([0.1, 1.0, 0.0001]) //float是类型。
y.backward(gradients) //
x.grad //返回y关于x的梯度向量

神经网络

使用 torch.nn 包可以进行神经网络的构建。

现在你对autograd有了初步的了解,而nn建立在autograd的基础上来进行模型的定义和微分。

nn.Module中包含着神经网络的层,同时forward(input)方法能够将output进行返回。                                                 //看不懂

举个例子,来看一下这个数字图像分类的神经网络。

这是一个简单的前馈神经网络。 从前面获取到输入的结果,从一层传递到另一层,最后输出最后结果。

一个典型的神经网络的训练过程是这样的:

  • 定义一个有着可学习的参数(或者权重)的神经网络
  • 对着一个输入的数据集进行迭代:
    • 用神经网络对输入进行处理
    • 计算代价值 (对输出值的修正到底有多少)
    • 将梯度传播回神经网络的参数中
    • 更新网络中的权重
      • 通常使用简单的更新规则: weight = weight + learning_rate * gradient

让我们来定义一个神经网络import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 1 input image channel, 6 output channels, 5x5 square convolution kernel
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120) # an affine operation: y = Wx + b
         FC(Full-connected)层 
 

F6层:

输入图片大小:         (1*1)*120

卷积窗大小:            1*1

卷积窗种类:             84

输出特征图数量:    1

输出特征图大小:    84

神经元数量:             84

连接数:                     10164        120*84+84

可训练参数:             10164        120*84+84

F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数产生单元i的一个状态。

        self.fc2   = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv2(x)), 2) # If the size is a square you can only specify a single number //看不懂
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features net = Net()
net '''神经网络的输出结果是这样的
Net (
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (400 -> 120)
(fc2): Linear (120 -> 84)
(fc3): Linear (84 -> 10)
)
'''

仅仅需要定义一个forward函数就可以了,backward会自动地生成。

注意: torch.nn 只接受小批量的数据

整个torch.nn包只接受那种小批量样本的数据,而非单个样本。 例如,nn.Conv2d能够结构一个四维的TensornSamples x nChannels x Height x Width。

如果你拿的是单个样本,使用input.unsqueeze(0)来加一个假维度就可以了。

你可以在forward函数中使用所有的Tensor中的操作。

模型中可学习的参数会由net.parameters()返回。

params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight input = Variable(torch.randn(1, 1, 32, 32))
out = net(input)
'''out 的输出结果如下
Variable containing:
-0.0158 -0.0682 -0.1239 -0.0136 -0.0645 0.0107 -0.0230 -0.0085 0.1172 -0.0393
[torch.FloatTensor of size 1x10]
''' net.zero_grad() # 对所有的参数的梯度缓冲区进行归零 //不明白
out.backward(torch.randn(1, 10)) # 使用随机的梯度进行反向传播 //不明白

复习一下前面我们学到的:

  • torch.Tensor - 一个多维数组
  • autograd.Variable - 改变Tensor并且记录下来操作的历史记录。和Tensor拥有相同的API,以及backward()的一些API。同时包含着和张量相关的梯度。
  • nn.Module - 神经网络模块。便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西。
  • nn.Parameter - 一种变量,当将任何值赋予Module时自动注册为一个参数。
  • autograd.Function - 实现了使用自动求导方法的前馈和后馈的定义。每个Variable的操作都会生成至少一个独立的Function节点,与生成了Variable的函数相连之后记录下操作历史。

到现在我们已经明白的部分:

  • 定义了一个神经网络。
  • 处理了输入以及实现了反馈。

仍然没整的:

  • 计算代价。
  • 更新网络中的权重。

一个代价函数接受(输出,目标)对儿的输入,并计算估计出输出与目标之间的差距。

nn package包中一些不同的代价函数.

一个简单的代价函数:nn.MSELoss计算输入和目标之间的均方误差。

举个例子:

output = net(input)
target = Variable(torch.range(1, 10)) # a dummy target, for example
criterion = nn.MSELoss()
loss = criterion(output, target)
'''loss的值如下
Variable containing:
38.5849
[torch.FloatTensor of size 1]
'''

现在,如果你跟随loss从后往前看,使用.creator属性你可以看到这样的一个计算流程图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss

因此当我们调用loss.backward()时整个图通过代价来进行区分,图中所有的变量都会以.grad来累积梯度。

# For illustration, let us follow a few steps backward
print(loss.creator) # MSELoss
print(loss.creator.previous_functions[0][0]) # Linear
print(loss.creator.previous_functions[0][0].previous_functions[0][0]) # ReLU '''
<torch.nn._functions.thnn.auto.MSELoss object at 0x7fe8102dd7c8>
<torch.nn._functions.linear.Linear object at 0x7fe8102dd708>
<torch.nn._functions.thnn.auto.Threshold object at 0x7fe8102dd648>
''' # 现在我们应当调用loss.backward(), 之后来看看 conv1's在进行反馈之后的偏置梯度如何
net.zero_grad() # 归零操作
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
loss.backward()
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad) ''' 这些步骤的输出结果如下
conv1.bias.grad before backward
Variable containing:
0
0
0
0
0
0
[torch.FloatTensor of size 6] conv1.bias.grad after backward
Variable containing:
0.0346
-0.0141
0.0544
-0.1224
-0.1677
0.0908
[torch.FloatTensor of size 6]
'''

现在我们已经了解如何使用代价函数了。(并没有)

阅读材料:

神经网络包中包含着诸多用于神经网络的模块和代价函数,带有文档的完整清单在这里:torch.nn - PyTorch 0.1.9 documentation

只剩下一个没学了:

  • 更新网络的权重

最简单的更新的规则是随机梯度下降法(SGD):

weight = weight - learning_rate * gradient

我们可以用简单的python来表示:

learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)

然而在你使用神经网络的时候你想要使用不同种类的方法诸如:SGD, Nesterov-SGD, Adam, RMSProp, etc.

我们构建了一个小的包torch.optim来实现这个功能,其中包含着所有的这些方法。 用起来也非常简单:

import torch.optim as optim
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr = 0.01) # in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update

就是这样。

但你现在也许会想。

那么数据怎么办呢?

通常来讲,当你处理图像,声音,文本,视频时需要使用python中其他独立的包来将他们转换为numpy中的数组,之后再转换为torch.*Tensor。

  • 图像的话,可以用Pillow, OpenCV。
  • 声音处理可以用scipy和librosa。
  • 文本的处理使用原生Python或者Cython以及NLTK和SpaCy都可以。

特别的对于图像,我们有torchvision这个包可用,其中包含了一些现成的数据集如:Imagenet, CIFAR10, MNIST等等。同时还有一些转换图像用的工具。 这非常的方便并且避免了写样板代码。

本教程使用CIFAR10数据集。 我们要进行的分类的类别有:'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'。 这个数据集中的图像都是3通道,32x32像素的图片。

下面是对torch神经网络使用的一个实战练习。

训练一个图片分类器

我们要按顺序做这几个步骤:

  1. 使用torchvision来读取并预处理CIFAR10数据集
  2. 定义一个卷积神经网络
  3. 定义一个代价函数
  4. 在神经网络中训练训练集数据
  5. 使用测试集数据测试神经网络

1. 读取并预处理CIFAR10

使用torchvision读取CIFAR10相当的方便。

import torchvision
import torchvision.transforms as transforms # torchvision数据集的输出是在[0, 1]范围内的PILImage图片。
# 我们此处使用归一化的方法将其转化为Tensor,数据范围为[-1, 1] transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
'''注:这一部分需要下载部分数据集 因此速度可能会有一些慢 同时你会看到这样的输出 Downloading http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Extracting tar file
Done!
Files already downloaded and verified
'''

我们来从中找几张图片看看。

# functions to show an image
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0))) # show some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next() # print images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s'%classes[labels[j]] for j in range(4)))

结果是这样的:

2. 定义一个卷积神经网络

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net()

3. 定义代价函数和优化器

criterion = nn.CrossEntropyLoss() # use a Classification Cross-Entropy loss
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

4. 训练网络

事情变得有趣起来了。 我们只需一轮一轮迭代然后不断通过输入来进行参数调整就行了。

for epoch in range(2): # loop over the dataset multiple times

    running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data # wrap them in Variable
inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients
optimizer.zero_grad() # forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step() # print statistics
running_loss += loss.data[0]
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
'''这部分的输出结果为
[1, 2000] loss: 2.212
[1, 4000] loss: 1.892
[1, 6000] loss: 1.681
[1, 8000] loss: 1.590
[1, 10000] loss: 1.515
[1, 12000] loss: 1.475
[2, 2000] loss: 1.409
[2, 4000] loss: 1.394
[2, 6000] loss: 1.376
[2, 8000] loss: 1.334
[2, 10000] loss: 1.313
[2, 12000] loss: 1.264
Finished Training
'''

我们已经训练了两遍了。 此时需要测试一下到底结果如何。

通过对比神经网络给出的分类和已知的类别结果,可以得出正确与否,如果预测的正确,我们可以将样本加入正确预测的结果的列表中。

好的第一步,让我们展示几张照片来熟悉一下。

dataiter = iter(testloader)
images, labels = dataiter.next() # print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s'%classes[labels[j]] for j in range(4)))

结果是这样的:

好的,接下来看看神经网络如何看待这几个照片。

outputs = net(Variable(images))

# the outputs are energies for the 10 classes.
# Higher the energy for a class, the more the network
# thinks that the image is of the particular class # So, let's get the index of the highest energy
_, predicted = torch.max(outputs.data, 1) print('Predicted: ', ' '.join('%5s'% classes[predicted[j][0]] for j in range(4))) '''输出结果为
Predicted: cat plane car plane
'''

结果看起来挺好。

看看神经网络在整个数据集上的表现结果如何。

correct = 0
total = 0
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) '''输出结果为
Accuracy of the network on the 10000 test images: 54 %
'''

看上去这玩意输出的结果比随机整的要好,随机选择的话从十个中选择一个出来,准确率大概只有10%。

看上去神经网络学到了点东西。

嗯。。。那么到底哪些类别表现良好又是哪些类别不太行呢?

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
images, labels = data
outputs = net(Variable(images))
_, predicted = torch.max(outputs.data, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i]
class_total[label] += 1 for i in range(10):
print('Accuracy of %5s : %2d %%' % (classes[i], 100 * class_correct[i] / class_total[i])) '''输出结果为
Accuracy of plane : 73 %
Accuracy of car : 70 %
Accuracy of bird : 52 %
Accuracy of cat : 27 %
Accuracy of deer : 34 %
Accuracy of dog : 37 %
Accuracy of frog : 62 %
Accuracy of horse : 72 %
Accuracy of ship : 64 %
Accuracy of truck : 53 %
'''

好吧,接下来该怎么搞了?

我们该如何将神经网络运行在GPU上呢?

在GPU上进行训练

就像你把Tensor传递给GPU进行运算一样,你也可以将神经网络传递给GPU。

这一过程将逐级进行操作,直到所有组件全部都传递到GPU上。

net.cuda()

'''输出结果为
Net (
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear (400 -> 120)
(fc2): Linear (120 -> 84)
(fc3): Linear (84 -> 10)
)
'''

记住,每一步都需要把输入和目标传给GPU。

    inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())

我为什么没有进行CPU运算和GPU运算的对比呢?因为神经网络实在太小了,其中的差距并不明显。

目标达成:

  • 在更高层级上理解PyTorch的Tensor库和神经网络。
  • 训练一个小的神经网络。

接下来我该去哪?

PyTorch深度学习:60分钟入门(Translation)的更多相关文章

  1. 【PyTorch深度学习60分钟快速入门 】Part1:PyTorch是什么?

      0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性 ...

  2. 【PyTorch深度学习60分钟快速入门 】Part4:训练一个分类器

      太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准 ...

  3. 【PyTorch深度学习60分钟快速入门 】Part5:数据并行化

      在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张 ...

  4. 【PyTorch深度学习60分钟快速入门 】Part3:神经网络

      神经网络可以通过使用torch.nn包来构建. 既然你已经了解了autograd,而nn依赖于autograd来定义模型并对其求微分.一个nn.Module包含多个网络层,以及一个返回输出的方法f ...

  5. 【PyTorch深度学习60分钟快速入门 】Part0:系列介绍

      说明:本系列教程翻译自PyTorch官方教程<Deep Learning with PyTorch: A 60 Minute Blitz>,基于PyTorch 0.3.0.post4 ...

  6. 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分

      在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...

  7. pytorch深度学习60分钟闪电战

    https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 官方推荐的一篇教程 Tensors #Construct a ...

  8. [PyTorch入门之60分钟入门闪击战]之入门

    深度学习60分钟入门 来源于这里. 本文目标: 在高层次上理解PyTorch的Tensor库和神经网络 训练一个小型的图形分类神经网络 本文示例运行在ipython中. 什么是PyTorch PyTo ...

  9. PyTorch 60 分钟入门教程

    PyTorch 60 分钟入门教程:PyTorch 深度学习官方入门中文教程 http://pytorchchina.com/2018/06/25/what-is-pytorch/ PyTorch 6 ...

随机推荐

  1. TIJ——Chapter Six:Access Control

    package:the library unit The levels of access control from "most access" to "least ac ...

  2. 【转载】Ubuntu终端常用的快捷键

    Ubuntu中的许多操作在终端(Terminal)中十分的快捷,记住一些快捷键的操作更得心应手.在Ubuntu中打开终端的快捷键是Ctrl+Alt+T.其他的一些常用的快捷键如下: 快捷键 功能 Ta ...

  3. 如何将英文PDF文献翻译成中文

    方法一:利用Google的本地文档翻译功能 这种方法比较简单,打开Google翻译首页http://translate.google.cn/, 选择"上传文档" 选择文件,开始翻译 ...

  4. oracle函数 SUBSTRB(c1,n1[,n2])

    [功能]取子字符串 [说明]多字节符(汉字.全角符等),按2个字符计算 [参数]在字符表达式c1里,从n1开始取n2个字符;若不指定n2,则从第y个字符直到结束的字串. [返回]字符型,如果从多字符右 ...

  5. List of open source software

    List of open source software https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/ ...

  6. 洛谷 2152 [SDOI2009]SuperGCD

    Description Sheng bill有着惊人的心算能力,甚至能用大脑计算出两个巨大的数的GCD(最大公约 数)!因此他经常和别人比赛计算GCD.有一天Sheng bill很嚣张地找到了你,并要 ...

  7. poj 2442 Sequence (Priority Queue)

    2442 -- Sequence 真郁闷,明明方法是对的,为什么我的代码老是那么的慢._(:з」∠)_ 这题要想考虑两列的情况,然后逐列拓展. 代码如下: #include <cstdio> ...

  8. 防止SyntaxHighlighter.js的闪烁闪一下的方法

    SyntaxHighlighter.js是一个代码高亮的JS插件,使用也很简单,但是由于是浏览器段执行JS代码来着色,会出现视觉上闪一下的效果.比如你的20行代码网页打开显示高度为100px,但是Sy ...

  9. Jieba分词包(一)——解析主函数cut

    1. 解析主函数cut Jieba分词包的主函数在jieba文件夹下的__init__.py中,在这个py文件中有个cut的函数,这个就是控制着整个jieba分词包的主函数.    cut函数的定义如 ...

  10. H3C MAC地址