给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式

第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式

输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

对Bellman-ford算法的队列优化

代码:
//邻接表存储
//n=1e5,不能用邻接表 import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Scanner; public class Main{
static final int N=100005, INF=0x3f3f3f3f;
static int h[]=new int[N];
static int e[]=new int[N];
static int ne[]=new int[N];
static int w[]=new int[N];
static int dis[]=new int[N];
static boolean vis[]=new boolean[N];
static int n,m,idx;
static void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
static int spfa(){
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
Arrays.fill(dis, INF);
dis[1]=0;
q.offer(1);
vis[1]=true;//vis数组表示当前点是否在队列中
while(!q.isEmpty()){
int t=q.poll();
vis[t]=false;//不在队列中,置为false
for(int i=h[t];i!=-1;i=ne[i]){
int j=e[i];
if(dis[j]>dis[t]+w[i]){
dis[j]=dis[t]+w[i];
if(!vis[j]){
vis[j]=true;
q.offer(j);
}
}
}
}
if(dis[n]==INF) return -1;
else return dis[n];
}
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
n=scan.nextInt();
m=scan.nextInt();
Arrays.fill(h, -1);
while(m-->0){
int a=scan.nextInt();
int b=scan.nextInt();
int c=scan.nextInt();
add(a,b,c);
}
int t=spfa();
if(t==-1) System.out.println("impossible");
else System.out.println(t);
}
}

851. spfa求最短路(spfa算法模板)的更多相关文章

  1. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  2. ACM - 最短路 - AcWing 851 spfa求最短路

    AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...

  3. 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)

    acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...

  4. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  5. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  6. acwing 851. spfa求最短路 模板

    地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

  7. 851. spfa求最短路

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  8. AcWing 851. spfa求最短路 边权可能为负数。 链表 队列

    #include <cstring> #include <iostream> #include <algorithm> #include <queue> ...

  9. Holy Grail【spfa求最短路】

    题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...

随机推荐

  1. Unity5.5.6 升级到 2018.4.1 打包出现的问题 : Gradle version 2.10 is required. Current version is 5.1.1

    起因:最近要在googleplay上架新游戏,而谷歌要求新上架的应用要支持64位,鉴于老版本的unity不支持打包64位apk,所以决定升级unity版本到2018.4.1, 但打包过程中出现了几个问 ...

  2. 修饰符 public、 private 和 protected和区别

    TypeScript 可以使用三种访问修饰符(Access Modifiers),分别是 public.private 和 protected. public 修饰的属性或方法是公有的,可以在任何地方 ...

  3. 学习MVC框架,处理分页和删除分页转跳的问题

    第一次写博客,文采不好请多见谅,这里主要是写一下,自己是如何处理分页问题,我想初学者也遇到过这个问题. 分页的情况下,编辑信息有返回和编辑2个按钮,操作后都是应该返回原分页界面,使用TempData把 ...

  4. HTTPS原理及流程

    HTTPS为什么更安全:数据对称加密传出,对称密钥使用非对称加密协商. HTTPS就一定安全吗:不一定,如果用户在浏览器端执意访问证书可疑或过期的站点,就存在安全隐患. --- HTTPS实现原理:h ...

  5. jquery二级导航

    效果图 直接放代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  6. spark基本概念整理

    app 基于spark的用户程序,包含了一个driver program和集群中多个executor driver和executor存在心跳机制确保存活3 --conf spark.executor. ...

  7. Jmeter连接数据库并使用数据表数据作为接口所需参数

    jmeter连接数据库,并且使用数据库的用户名密码进行登录操作,具体步骤如下: 1.参考博客<Jmeter连接SqlServer数据库并操作>进行相关内容的补充,修改JDBC Reques ...

  8. win2012 挂载硬盘即增加新硬盘方法

    这篇文章主要介绍了win2012 挂载硬盘即增加新硬盘方法,需要的朋友可以参考下 点击左下角的服务器管理图标 点击右上角的“工具”,再选择“计算机管理” 再点击“磁盘管理” 在磁盘1的按钮处单击右键, ...

  9. 【Android】WebDav For Android

    最近在写一个云备份功能,参考了一下市面上的软件,发现有一种采用WebDav协议的云备份成本比较低,故特地研究一下使用. 服务器提供商是使用国内的坚果云,还是非常良心的. 坚果云官网:https://w ...

  10. C++关于锁的总结(一)

    C++关于锁的总结(一) 线程中的锁分为两种,互斥锁和共享锁. 相关的头文件有<mutex>,<shared_mutex>,前者具有std::unique_lock操作,用于实 ...