模板—扩展GCD*2
有必要重新学一下扩展GCD emmmm。
主要是扩展GCD求解线性同余方程$ax≡b (mod p)$。
1.方程有解的充分必要条件:b%gcd(a,p)=0。
证明:
- $ax-py=b$
- 由于求解整数解,ax是gcd(a,p)的整数倍,py也是,所以b是gcd(a,p)的整数倍。
2.扩展GCD模板
int exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1,y=0;return a;}//注意x,y的赋值。
int gcd=exgcd(b,a%b,x,y),t=x;
x=y;y=t-a/b*y;
return gcd;
}
3.求解线性同余方程:
扩展欧几里得可以求解形如$ax-py=b$的解。
方程可化为$ax≡b (mod p)$,注意b和p的位置。
令t=gcd(a,p)。方程可化为$\frac {a}{t}x-\frac{p}{t}y=\frac{b}{t}$。exgcd求出$\frac {a}{t}x-\frac{p}{t}y=1$的一组特解x,y。$x*=b/t,y*=b/t$即可求出一组解。
而要求最小整数解,可以发现如果x减p,y加a等式仍然成立,所以最小整数解为(x%p+p)%p.
int GCD(int a,int b){return !b?a:GCD(b,a%b);}
int exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1,y=0;return a;}
int gcd=exgcd(b,a%b,x,y),t=x;
x=y;y=t-a/b*y;
return gcd;
}
int fcc(int a,int b,int p)
{
int x,y,t=GCD(a,p);
if(b%t)return -1;
int tem=b/t;a/=t,p/=t;
exgcd(a,p,x,y);
x*=tem,y*=tem;
return (x%p+p)%p;
}
模板—扩展GCD*2的更多相关文章
- 模板——扩展欧几里得算法(求ax+by=gcd的解)
Bryce1010模板 /**** *扩展欧几里得算法 *返回d=gcd(a,b),和对应等式ax+by=d中的x,y */ long long extend_gcd(long long a,long ...
- poj 1061 青蛙的约会(扩展gcd)
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...
- VS自定义项目模板:[2]创建VSIX项目模板扩展
VS自定义项目模板:[2]创建VSIX项目模板扩展 听语音 | 浏览:1237 | 更新:2015-01-02 09:21 | 标签:软件开发 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师 ...
- UESTC 288 青蛙的约会 扩展GCD
设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L ...
- Poj 1061 青蛙的约会(扩展GCD)
题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分 ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS
BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...
- 扩展gcd算法
扩展gcd算法 神tm ×度搜索exgcd 打到exg的时候出来ex咖喱棒... 球方程\(ax+by=\gcd(a,b)\)的一个解 如果\(b=0\),那么\(\gcd(a,b)=a\),取\(x ...
- 扩展gcd codevs 1200 同余方程
codevs 1200 同余方程 2012年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 求关 ...
随机推荐
- 搭建单向HTTPS
//参考网址:https://blog.csdn.net/haolipengzhanshen/article/details/51278262 //打开CMD窗口 cd C:\wamp\bin\apa ...
- Spring_Hibernate整合准备
1,Spring整合Hibernate 整合什么? 1)由IOC容器来生成Hibernate的SessionFactory 2)让Hibernate使用上Spring的声明式事务 2,整合步骤 1 ...
- 直接在安装了redis的Linux机器上操作redis数据存储类型--对key的操作
一.概述: 前几篇博客中,主要讲述的是与Redis数据类型相关的命令,如String.List.Set.Hashes和Sorted-Set.这些命令都具有一个共同点,即所有的操作都是针对与Key关 ...
- Boost.Asio基础
http://www.voidcn.com/article/p-exkmmuyn-po.html http://www.voidcn.com/article/p-xnxiwkrf-po.html ht ...
- webpack学习之—— 依赖图(Dependency Graph) 及 构建目标(Targets)
Dependency Graph 任何时候,一个文件依赖于另一个文件,webpack 就把此视为文件之间有依赖关系.这使得 webpack 可以接收非代码资源(non-code asset)(例如图像 ...
- python 中初始化二维数组的方法
最好的方法是: 初始化4*3的二维数组 a = [[0 for col in xrange(3)] for row in xrange(4)] 而不可以用: a = [[0]*3]*4 [0]*3是生 ...
- Hdu 1150
Machine Schedule Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- CSS预处理——LESS
LESS是什么? less是一门CSS预处理语言.由于CSS本身并不是程序式语言,不方便维护和扩展,没有变量.函数.作用域等概念.而LESS在CSS的基础语法之上,引入了变量.Mixin混入.运算以及 ...
- 深入探索WebSockets
WebSockets简介 在2008年中期,开发人员Michael Carter和Ian Hickson特别敏锐地感受到Comet在实施任何真正强大的东西时所带来的痛苦和局限. 通过在IRC和W3C邮 ...
- iOS 自定义Tabbar实现push动画隐藏效果
http://wonderffee.github.io/blog/2013/08/07/hide-custom-tab-bar-with-animation-when-push/ 在之前的一篇文章(链 ...