(浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$
(2)当$x\in[0,2]$时,求$|f(x)|$的最大值.


分析:
由题意$f^{'}(x)=3x^2-6x+3a$
当$\Delta=36(1-a)\ge0$时,可求得极值点$x_1=1-\sqrt{1-a},x_2=1+\sqrt{1-a}$
(注:考虑到$x\in[0,2]$ 故只需考虑$0\le a\le1$时)
对应极值为$f(x_1)=1+2(1-a)\sqrt{1-a},f(x_2)=1-2(1-a)\sqrt{1-a}$
(注:求极值时用$x^2=2x-a$降次后再代入)
由$f(x_1)+f(x_2)=2>0,f(x_1)-f(x_2)=4(1-a)\sqrt{1-a}>0$得
$f(x_1)\ge|f(x_2)|$
$\because \max\{|f(x)\}=\max\{|f(x)_{min}|,|f(x)_{max}|\}$
故只需考虑
$\max\{|f(x)|\}=\max\{|f(0)|,|f(2)|,|f(x_1)|\}=\max\{|3-3a|,|3a-1|,1+2(1-a)\sqrt{1-a}\}$
由图像可得
$$\max\{|f(x)\}=
\begin{cases}
3-3a,&x\le0\\
1+2(1-a)\sqrt{1-a},&0<x<\dfrac{3}{4}\\
3a-1,&x\ge\dfrac{3}{4}\\
\end{cases}$$

注:
$|f(x)|$的最大值的题型要想到用画图去做.

题中$g(a)=1+2(1-a)\sqrt{1-a},(0<a<1)$的图像可以由$y=2a^{\frac{3}{2}}$变换得到

MT【285】含参数函数绝对值的最大值的更多相关文章

  1. MT【269】含参函数绝对值最大

    设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$). (1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b ...

  2. Python第七天 函数 函数参数 函数里的变量 函数返回值 多类型传值 函数递归调用 匿名函数 内置函数

    Python第七天   函数  函数参数   函数里的变量   函数返回值  多类型传值     函数递归调用   匿名函数   内置函数 目录 Pycharm使用技巧(转载) Python第一天   ...

  3. C语言学习020:可变参数函数

    顾名思义,可变参数函数就是参数数量可变的函数,即函数的参数数量是不确定的,比如方法getnumbertotal()我们即可以传递一个参数,也可以传递5个.6个参数 #include <stdio ...

  4. 速战速决 (3) - PHP: 函数基础, 函数参数, 函数返回值, 可变函数, 匿名函数, 闭包函数, 回调函数

    [源码下载] 速战速决 (3) - PHP: 函数基础, 函数参数, 函数返回值, 可变函数, 匿名函数, 闭包函数, 回调函数 作者:webabcd 介绍速战速决 之 PHP 函数基础 函数参数 函 ...

  5. Swift开发第十篇——可变参数函数&初始化方法顺序

    本篇分为两部分: 一.Swift中的可变参数函数 二.初始化方法的顺序 一.Swift中的可变参数函数 可变参数函数指的是可以接受任意多个参数的函数,在 OC 中,拼接字符串的函数就属于可变参数函数 ...

  6. C语言变参数函数

    #include<iostream> #include<stdarg.h> using namespace std; int sum(int cnt, ...){ va_lis ...

  7. C语言中可变参数函数实现原理

    C函数调用的栈结构 可变参数函数的实现与函数调用的栈结构密切相关,正常情况下C的函数参数入栈规则为__stdcall, 它是从右到左的,即函数中的最右边的参数最先入栈.例如,对于函数: void fu ...

  8. C可变参数函数 实现

    转自:http://blog.csdn.net/weiwangchao_/article/details/4857567 C函数要在程序中用到以下这些宏: void va_start( va_list ...

  9. C语言可变参数函数实现原理

    一.可变参数函数实现原理 C函数调用的栈结构: 可变参数函数的实现与函数调用的栈结构密切相关,正常情况下C的函数参数入栈规则为__stdcall, 它是从右到左的,即函数中的最右边的参数最先入栈. 本 ...

随机推荐

  1. hibernate坑边闲话2

    threw exception [Request processing failed; nested exception is org.springframework.orm.hibernate5.H ...

  2. adb通过wifi连接android设备

    问题背景 近期的项目测试中,需要将移动设备与厂商机器进行usb连接视频传输(投屏).测试过程中需要定位问题,经常需要查看实时日志,移动设备已经和厂商机器usb连接投屏,无法用usb连接到PC,那么有什 ...

  3. WebSocket实现一个聊天室

    聊天室页面-->index.html <!DOCTYPE html> <html> <head> <meta charset="UTF-8&q ...

  4. 使用 Drools 和 JPA & Drools show case in docker hub

    使用 Drools 和 JPA 实现持续的实时数据分析https://www.ibm.com/developerworks/cn/java/j-drools5/index.html Drools - ...

  5. MySQL慢查询日志配置方式 slow_query_log

    MySQL慢查询(一) - 开启慢查询 - 鲁玉成 - 博客园 https://www.cnblogs.com/luyucheng/p/6265594.html mysql开启慢查询方法 - lava ...

  6. Windows10常用快捷键

    1. 打开注册表 ctrl+R   --->   regedit   2.打开资源管理器 win + E    3.切换到桌面 win + D   再按一次可以进行还原   4.锁屏 win+ ...

  7. 【转帖】Linux的历史----Linux内核剖析(一)

    Linux的历史----Linux内核剖析(一) 2015年04月09日 10:51:09 JeanCheng 阅读数:11351更多 所属专栏: Linux内核剖析    版权声明:本文为博主原创文 ...

  8. IDEA 各版本在线激活(激活码)

    lan yu 大佬的授权又被封杀了,还好我收藏了一些其他的服务器地址. 在线授权服务器 https://jetlicense.nss.im/ 授权代码 K03CHKJCFT-eyJsaWNlbnNlS ...

  9. Freemarker 页面静态化技术使用入门案例

    在访问 新闻.活动.商品 详情页面时, 路径可以是 xx[id].html, 服务器端根据请求 id, 动态生成 html 网页,下次访问数据时,无需再查询数据,直接将 html 静态页面返回.这样一 ...

  10. bootstrap模态框关闭后清除模态框的数据

    https://segmentfault.com/q/1010000008789123 bootstrap模态框第二次打开时如何清除之前的数据? 我用了bootstrap模态框的remote功能,在弹 ...