GCD Reduce


Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

You are given a sequence {A1A2, ..., AN}. You task is to change all the element of the sequence to 1 with the following operations (you may need to apply it multiple times):

  • choose two indexes i and j (1 ≤ i < j ≤ N);
  • change both Ai and Aj to gcd(AiAj), where gcd(AiAj) is the greatest common divisor of Ai and Aj.

You do not need to minimize the number of used operations. However, you need to make sure that there are at most 5N operations.

Input

Input will consist of multiple test cases.

The first line of each case contains one integer N (1 ≤ N ≤ 105), indicating the length of the sequence. The second line contains N integers, A1A2, ..., AN (1 ≤ Ai ≤ 109).

Output

For each test case, print a line containing the test case number (beginning with 1) followed by one integer M, indicating the number of operations needed. You must assure that M is no larger than 5N. If you cannot find a solution, make M equal to -1 and ignore the following output.

In the next M lines, each contains two integers i and j (1 ≤ i < j ≤ N), indicating an operation, separated by one space.

If there are multiple answers, you can print any of them.

Remember to print a blank line after each case. But extra spaces and blank lines are not allowed.

Sample Input

4
2 2 3 4
4
2 2 2 2

Sample Output

Case 1: 3
1 3
1 2
1 4 Case 2: -1

题意:给你N个数,每次任意选取两个数,然后这两个数的值会变成gcd(a,b),如果能把整个序列都变成1的话,求选择的顺序;

思路:很明显只要做出1就行了,gcd(1,x)=1,我从第一个数开始一直向后面去gcd,取到第i个数肯定就是那么1的值前i个数的gcd,只要判断一直取到最后一个第1个数有没有变成1就行了,判断有之后,说明除了第一个数其他的n-1个数肯定会是有一个数跟第一个数的gcd为1,反证法就能很好的证明,那么只要第一个数跟另外的n-1个数依次取gcd,碰到互质就跳出来,并记录点,那么只要先选择1和这个点,剩下的n-2个数直接和1取就行了,但是这样交上去时wa的。。。你第一个数依次和后面的数取gcd那么取到最后一个的时候,1这个数肯定是前n个数的最大公约数,如果第一个数此时为1的话,那么再进行一次操作就好了,要求操作次数小于5*n,这个时候只是2*(n-1),完全是可以的,这样交上去是对的,反过来想,第一个数取到最后为1,那么最后一个数肯定这个时候也为1啊,我从后面往前GCD肯定也是对的,但是这样写的话交上去也是wa的,应该是special judge没有写好。。。

 #include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define N 100100
int a[N];
int gcd(int a,int b)
{
if(b==) return a;
return gcd(b,a%b);
}
int main()
{
int n;
int cnt=;
while(scanf("%d",&n)!=EOF)
{
cnt++;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int res=a[];
for(int i=;i<=n;i++)
res=gcd(res,a[i]);
if(res!=)
printf("Case %d: -1\n\n",cnt);
else
{
printf("Case %d: %d\n",cnt,*(n-));
for(int i=;i<=n;i++)
printf("1 %d\n",i);
for(int i=;i<=n;i++)
printf("1 %d\n",i);
printf("\n");
}
}
return ;
}

ZOJ 3846 GCD Reduce//水啊水啊水啊水的更多相关文章

  1. zoj.3868.GCD Expectation(数学推导>>容斥原理)

    GCD Expectation Time Limit: 4 Seconds                                     Memory Limit: 262144 KB    ...

  2. Zoj 3868 GCD Expectation

    给一个集合,大小为n , 求所有子集的gcd 的期望和 . 期望的定义为 这个子集的最大公约数的K次方 : 每个元素被选中的概率是等可能的 即概率 p = (发生的事件数)/(总的事件数); 总的事件 ...

  3. 【推导】zoj3846 GCD Reduce

    题意:给你n个正整数a1...an,一次操作是选择任意两个数ai,aj,将它们都替换成gcd(ai,aj).让你在5n步内将所有数变为1.或者输出不可能. 如果所有数的gcd不为1,显然不可能. 否则 ...

  4. ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)

    Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...

  5. ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)

    GCD Expectation Time Limit: 4 Seconds     Memory Limit: 262144 KB Edward has a set of n integers {a1 ...

  6. zoj[3868]gcd期望

    题意:求n个数组成的集合的所有非空子集的gcd的期望 大致思路:对于一个数x,设以x为约数的数的个数为cnt[x],所组成的非空集合个数有2^cnt[x]-1个,这其中有一些集合的gcd是x的倍数的, ...

  7. 有一个5ml 的瓶子 和3ml 的瓶子 和 很多水 现在 要取出4ml的水 请写出编程 多种解法

    //TODO public class demo { public static void main(String[] args) { demo.ss(); demo.sss(); } public ...

  8. ZOJ 2514 Generate Passwords 水

    啦啦啦,水一发准备去复习功课~ ------------------------------------------水一发的分割线----------------------------------- ...

  9. May Challenge 2019 Division 2 水题讲解

    Reduce to One 这题其实蛮水的? 题意就是说: 给定一个 1~n 的序列,每次挑两个数 x y 合并,合并值为 \(x+y+xy\) ,然后求不断合并最后剩下的一个的最大值 随便搞搞发现答 ...

随机推荐

  1. Mysql数据库中的日期相关操作

    1.获取当前时间的日期 select now();----------------------------------如:2008-12-29 16:25:46 select curdate();-- ...

  2. ibeacon和蓝牙有什么区别_它们的区别在哪里

    iBeacon概述 iBeacon是苹果公司2013年9月发布的移动设备用OS(iOS7)上配备的新功能.其工作方式是,配备有低功耗蓝牙(BLE)通信功能的设备使用BLE技术向周围发送自己特有的ID, ...

  3. Svn基本操作

    日常开发中使用到的Svn基本操作 svn      https://tortoisesvn.net/ https://www.visualsvn.com/server/download/   1. 检 ...

  4. MySQL设计SQL语句优化规范

    原文:http://bbs.landingbj.com/t-0-240751-1.html 1. 使用mysql explain 对sql执行效率进行检测 ,explain显示了mysql如何使用索引 ...

  5. linux安装ssh服务

    1.安装openssh-server sudo apt-get install openssh-server 2.检查openssh-server是否安装成功 sudo ps -e | grep ss ...

  6. 免费苹果账号(apple id)申请ios证书p12真机调试

    HBuilder可以直接打包越狱版的ipa包,但需要越狱手机才能安装,如果需要安装到没越狱的手机安装,需要自己申请ios证书打包. 一般是需要一个付费了的苹果开发者账号才能申请ios证书打包. 这里介 ...

  7. WorldCount代码检查与优化——软件测试第三次作业

    合作者:201631062222,201631062232 代码地址:https://gitee.com/biubiubiuLYQ/ceshi_secend 本次作业链接地址:https://edu. ...

  8. 集合之TreeSet(含JDK1.8源码分析)

    一.前言 前面分析了Set接口下的hashSet和linkedHashSet,下面接着来看treeSet,treeSet的底层实现是基于treeMap的. 四个关注点在treeSet上的答案 二.tr ...

  9. Mybatis之执行自定义SQL举例

    本文说明如何使用Mybatis执行我自定义输入的SQL语句. 需要的mybaits文件包括:配置文件(mybatis-config-dao.xml 和 jdbc.properties).接口文件(IS ...

  10. idea中Lombok的使用

    使用了lombok的注解(@Setter,@Getter,@ToString,@@RequiredArgsConstructor,@EqualsAndHashCode或@Data)之后,就不需要编写或 ...