Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值
其中k mod i表示k除以i的余数。
例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。
1<=n ,k<=10^9

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7
 
思路:
k%i 拆成 k - (int)(k/i)*i ,很明显后面部分可以用分块+等差数列求和来解决
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long int main()
{
ll n,k,ans = ;
scanf("%lld%lld",&n,&k);
if(n > k) ans = (n-k)*k,n = k;
ll l = ,r;
while(l <= n){
r = k/(k/l);
if(r > n) r = n;
ans += k*(r-l+) - (k/l)*(r-l+)*(r+l)/;
l = r+;
}
printf("%lld\n",ans);
}

bzoj 1257: [CQOI2007]余数之和 (数学+分块)的更多相关文章

  1. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  2. bzoj 1257 [CQOI2007]余数之和——数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...

  3. BZOJ 1257 [CQOI2007]余数之和 数学

    都不知道说什么好...咕咕到现在.. 求:$\sum_{i=1}^n \space k\space mod \space i$ 即求:$n*k-\sum_{i=1}^n\space \lfloor \ ...

  4. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  5. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  6. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  7. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  8. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  9. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

随机推荐

  1. Beta阶段团队成员贡献分分配规则

    Beta阶段团队成员贡献分分配规则 Alpha阶段贡献分分配有些负责,在这里进行一些修改: 对任务完成得分部分进行了简化 对发现bug的惩罚措施进行了修改 移除了优化得分,不鼓励修改他人代码 移除了帮 ...

  2. Centos7 ssh配置RSA证书登录

    修改sshd配置文件 vim /etc/ssh/sshd_config #增加以下三项 RSAAuthentication yes PubkeyAuthentication yes Authorize ...

  3. A-Text Reverse(文本反向读)

    多组数据测试,输入t,表示要测几个,每个语句反向输出. 链接 [https://cn.vjudge.net/contest/235390#problem/A] 解: 就是getchar()和gets( ...

  4. Continued Fractions CodeForces - 305B (java+高精 / 数学)

    A continued fraction of height n is a fraction of form . You are given two rational numbers, one is ...

  5. CentOS 7从Python 2.7升级至Python3.6.1

    引言: CentOS是目前最为流行的Linux服务器系统,其默认的Python 2.x,但是根据python社区的规划,在不久之后,整个社区将向Python3迁移,且将不在支持Python2, 那该如 ...

  6. PS调出通透唯美阳光外景女生照片

    1.稍微增加了一点曝光度,让照片更明亮. 2.对比度的话我现在比习惯加一点,而且 一般导入PS之后我还会按照片情况去加对比度. 3.高光的部分一般会拉回来一点,根据照片调. 4.阴影部分加一点的话会让 ...

  7. Git文件冲突的常用解决方法

    在提交代码时,偶尔会有文件冲突的情况,当出现: Please, commit your changes or stash them before you can merge. 提示后,可用依次输入下列 ...

  8. MyBatis使用注解开发

  9. PHP中多个文件包含的问题 (一)

    使用require或者include来包含文件时,包含的文件的内容相对性,这个很容易搞混,所以记录一下. 这个相对性包括 __DIR__,__FILE__,$_SERVER['PHP_SELF'],$ ...

  10. API接口TOKEN设计

    首先需要知道API是什么?   API(Application Programming Interface)即应用程序接口.你可以认为 API 是一个软件组件或是一个 Web 服务与外界进行的交互的接 ...