Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值
其中k mod i表示k除以i的余数。
例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。
1<=n ,k<=10^9

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7
 
思路:
k%i 拆成 k - (int)(k/i)*i ,很明显后面部分可以用分块+等差数列求和来解决
 
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long int main()
{
ll n,k,ans = ;
scanf("%lld%lld",&n,&k);
if(n > k) ans = (n-k)*k,n = k;
ll l = ,r;
while(l <= n){
r = k/(k/l);
if(r > n) r = n;
ans += k*(r-l+) - (k/l)*(r-l+)*(r+l)/;
l = r+;
}
printf("%lld\n",ans);
}

bzoj 1257: [CQOI2007]余数之和 (数学+分块)的更多相关文章

  1. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  2. bzoj 1257 [CQOI2007]余数之和——数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...

  3. BZOJ 1257 [CQOI2007]余数之和 数学

    都不知道说什么好...咕咕到现在.. 求:$\sum_{i=1}^n \space k\space mod \space i$ 即求:$n*k-\sum_{i=1}^n\space \lfloor \ ...

  4. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  5. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  6. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  7. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  8. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  9. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

随机推荐

  1. Entity Framework Core系列之什么是Entity Framework Core

    前言 Entity Framework Core (EF Core)是微软推荐的基于.NET Core framework的应用程序数据访问技术.它是轻量级,可扩展并且支持跨平台开发.EF Core是 ...

  2. 15-分析Ajax请求并抓取今日头条街拍美图

    流程框架: 抓取索引页内容:利用requests请求目标站点,得到索引网页HTML代码,返回结果. 抓取详情页内容:解析返回结果,得到详情页的链接,并进一步抓取详情页的信息. 下载图片与保存数据库:将 ...

  3. mysql_查的小理解

    show create table employee; 对这个语句的小理解: 顿悟呀,之前一直不太理解这条语句,现在忽然觉得明朗起来.他就是展示创建这个表格时的SQL语句.执行上述代码之后结果如下: ...

  4. Java Core - 序列化和反序列化

    把对象转换为字节序列的过程称为对象的序列化 把字节序列恢复成对象的过程称为对象的反序列化 一.对象的序列化的应用: 1.把对象的字节序列永久地保存到硬盘上,通常存放在一个文件中. 2.在网络上传送对象 ...

  5. centos yum install oracle java

    How to install Java on CentOS 7 | Linuxizehttps://linuxize.com/post/install-java-on-centos-7/ CentOS ...

  6. bootstrap 弹窗或者提示框插件 bootstrap-growl 和bootstrap-notify

    Bootstrap简单好用的页面右上角咆哮提示框 - daidaineteasy的专栏 - CSDN博客https://blog.csdn.net/daidaineteasy/article/deta ...

  7. 利用js给datalist或select动态添加option选项

    <!DOCTYPE html> <html> <head> <title>鼠标点击时加载</title> <script type=& ...

  8. Swagger2常用注解及其说明 (转)

    Api 用在Controller中,标记一个Controller作为swagger的文档资源 属性名称 说明 value Controller的注解 description 对api资源的描述 hid ...

  9. python之路--前端CSS

    一.CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义了如何显示HTML元素,给HTML设置样式,让他更加美观. 当浏览器读到这个样式表, 他就会按照这个样式来对文档进行 ...

  10. groovy安装 ideal

    参考:https://blog.csdn.net/newbie_907486852/article/details/80879745 (1) 首先下载groovy: https://gradle.or ...