MT【154】拉格朗日配方
(清华2017.4.29标准学术能力测试24)
设$x,y\in\mathbb{R}$,函数$f(x,y)=x^2+6y^2-2xy-14x-6y+72$的值域为$M$,则______
A.$1\in M$
B.$2\in M$
C.$3\in M$
D.$4\in M$
答案:C和D.
提示:原式=$(x-y-7)^2+5(y-2)^2+3$
练习1:
已知 $9a^2+8ab+7b^2\leq 6$,求 $7a+5b+12ab$ 的最大值.
提示:
\begin{align*}
6-(7a+5b+12ab)
&= \left(3a-\dfrac{7+4b}{6}\right)^2+\dfrac{236}{36}(b-\dfrac{1}{2})^2-3 \\
& \ge-3\\
\textbf{或者:} 6-(7a+5b+12ab) \\
& \geq 9a^2+8ab+7b^2-(7a+5b+12ab) \\
& =2(a-b)^2+7(a-\frac{1}{2})^2+5(b-\frac{1}{2})^2-3 \\
&\geq -3
\end{align*}
练习2
已知$O$为坐标原点,点$P$为曲线$2xy-5x-4y+6=0$上的动点,则$OP$的最小值为_____
答案:$\dfrac{\sqrt{5}}{2}$
分析:
\begin{align*}
OP^2&=x^2+y^2\\&=x^2+y^2+\dfrac 12\left(2xy-5x-4y+6\right)\\
&=\left(x+\dfrac 12y-\dfrac 54\right)^2+\dfrac 34\left(y-\dfrac 12\right)^2+\dfrac 54\\
&\ge \dfrac 54
\end{align*}
听凤凰传奇《月亮之上》版数学诗歌:
拉格朗日, 傅立叶旁, 我凝视你凹函数般的脸庞。 微分了忧伤, 积分了希望, 我要和你追逐黎曼最初的梦想。 感情已发散, 收敛难挡, 没有你的极限, 柯西抓狂, 我的心已成自变量, 函数因你波起波荡。 低阶的有限阶的, 一致的不一致的, 是我想你的皮亚诺余项。 狄利克雷,勒贝格杨 一同仰望莱布尼茨的肖像, 拉贝、泰勒,无穷小量, 是长廊里麦克劳林的吟唱。 打破了确界, 你来我身旁, 温柔抹去我, 阿贝尔的伤, 我的心已成自变量, 函数因你波起波荡。 低阶的有限阶的, 一致的不一致的, 是我想你的皮亚诺余项。
MT【154】拉格朗日配方的更多相关文章
- MT【169】拉格朗日配方
已知$x^2+y^2+z^2=1$求$3xy-3yz+2z^2$的最大值______ 答案:$3$ 提示:$3(x^2+y^2+z^2)-(3xy-3yz+2z^2)=3\left(y+\dfrac{ ...
- MT【291】2元非齐次不等式
实数$x,y$满足$x^2+y^2=20,$求$xy+8x+y$的最大值___ 法一:$xy\le\dfrac{1}{4}x^2+y^2,8x\le x^2+16,y\le\dfrac{1}{4}y^ ...
- MT【275】拉格朗日中值定理
已知$0<x_1<c<x_2<e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x ...
- MT【189】二次条件配方
“当一幢建筑物完成时,应该把脚手架拆除干净.”——高斯 (2017北大特优)若对任意使得关于 \(x\) 的方程 \(ax^2+bx+c=0\)(\(ac\ne 0\))有实数解的 \(a,b,c\) ...
- MT【317】两次判别式
已知$a^2+b^2+c^2-ab-bc=1$求$c$的最大值______ 注意到$2c^2-3(a^2+b^2+c^2-ab-bc)=-(c-\dfrac{3}{2}b)^2-3(a-\dfrac{ ...
- Android 4.4 Kitkat Phone工作流程浅析(七)__来电(MT)响铃流程
本文来自http://blog.csdn.net/yihongyuelan 转载请务必注明出处 本文代码以MTK平台Android 4.4为分析对象,与Google原生AOSP有些许差异,请读者知悉. ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- 1Z0-053 争议题目解析154
1Z0-053 争议题目解析154 考试科目:1Z0-053 题库版本:V13.02 题库中原题为: 154.A database is running in ARCHIVELOG mode and ...
随机推荐
- Git文件冲突的常用解决方法
在提交代码时,偶尔会有文件冲突的情况,当出现: Please, commit your changes or stash them before you can merge. 提示后,可用依次输入下列 ...
- 【转】redis-cluster安装配置
需要三台虚拟机(生产环境是3个物理机),分配静态IP.cluster中共6个节点.3主3从.本文中每个虚拟机上的redis端口:6379 6380. 需要注意的两点: 3个主节点分别位于3台虚拟机上, ...
- Zabbix appliance manual
https://www.zabbix.com/documentation/4.0/manual/appliance If the appliance fails to start up in Hype ...
- Mysql之常用操作(2)
Windows服务 -- 启动MySQL net start mysql -- 创建Windows服务 sc create mysql binPath= mysqld_bin_path(注意:等号与值 ...
- HTTP之referrer
我们知道,在页面引入图片.JS 等资源,或者从一个页面跳到另一个页面,都会产生新的 HTTP 请求,浏览器一般都会给这些请求头加上表示来源的 Referrer 字段.Referrer 在分析用户来源时 ...
- jdk环境变量配置注意事项
cmd 运行java -version 显示错误 Registry key 'Software\JavaSoft\Java Runtime Environment\CurrentVersion'has ...
- 通过event记录sql
providers EventServiceProvider.php 添加 protected $listen = [ 'Illuminate\Database\Events\QueryExecute ...
- [转帖]Centos7 yum安装Chrome浏览器
Centos7 yum安装Chrome浏览器 https://www.cnblogs.com/ianduin/p/8727333.html以及https://blog.csdn.net/libaine ...
- [官网]Red Hat Enterprise Linux Release Dates
Red Hat Enterprise Linux Release Dates https://access.redhat.com/articles/3078 The tables below list ...
- Day 5-7 exec 和元类的创建.
exec方法 元类 exec(str_command,globals,locals)参数1:字符串形式的命令参数2:全局作用域(字典形式). 如果不指定,默认globals参数3:局部作用(字典形式) ...