【RNN】资源汇总
wesome Recurrent Neural Networks
A curated list of resources dedicated to recurrent neural networks (closely related todeep learning).
Maintainers -Jiwon Kim,Myungsub Choi
We have pages for other topics:awesome-deep-vision,awesome-random-forest
Table of Contents
Theano- Python
Simple IPythontutorial on Theano
RNN for semantic parsing of speech
LSTM network for sentiment analysis
Keras: Theano-based Deep Learning Library
theano-rnnby Graham Taylor
Passage: Library for text analysis with RNNs
Caffe- C++ with MATLAB/Python wrappers
LRCNby Jeff Donahue
Torch- Lua
char-rnnby Andrej Karpathy : multi-layer RNN/LSTM/GRU for training/sampling from character-level language models
LSTMby Wojciech Zaremba : Long Short Term Memory Units to train a language model on word level Penn Tree Bank dataset
Oxfordby Nando de Freitas : Oxford Computer Science - Machine Learning 2015 Practicals
rnnby Nicholas Leonard : general library for implementing RNN, LSTM, BRNN and BLSTM (highly unit tested).
Etc.
RNNLIBby Alex Graves : C++ based LSTM library
RNNLMby Tomas Mikolov : C++ based simple code
neuraltalkby Andrej Karpathy : numpy-based RNN/LSTM implementation
gistby Andrej Karpathy : raw numpy code that implements an efficient batched LSTM
Stanford NLP (CS224d) by Richard Socher
Lecture Note 3: neural network basics
Lecture Note 4: RNN language models, bi-directional RNN, GRU, LSTM
OxfordMachine Learningby Nando de Freitas
Lecture 12: Recurrent neural networks and LSTMs
Lecture 13: (guest lecture) Alex Graves on Hallucination with RNNs
Alex Graves (2008)
Supervised Sequence Labelling with Recurrent Neural Networks
Tomas Mikolov (2012)
Statistical Language Models based on Neural Networks
Ilya Sutskever (2013)
Training Recurrent Neural Networks
Richard Socher (2014)
Recursive Deep Learning for Natural Language Processing and Computer Vision
Bi-directional RNN [Paper]
Mike Schuster and Kuldip K. Paliwal,Bidirectional Recurrent Neural Networks, Trans. on Signal Processing 1997
LSTM [Paper]
Sepp Hochreiter and Jurgen Schmidhuber,Long Short-Term Memory, Neural Computation 1997
Multi-dimensional RNN [Paper]
Alex Graves, Santiago Fernandez, and Jurgen Schmidhuber,Multi-Dimensional Recurrent Neural Networks, ICANN 2007
GRU (Gated Recurrent Unit) [Paper]
Kyunghyun Cho, Bart van Berrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio,Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 / EMNLP 2014
GFRNN [Paper-arXiv] [Paper-ICML] [Supplementary]
Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, Yoshua Bengio,Gated Feedback Recurrent Neural Networks, arXiv:1502.02367 / ICML 2015
Tree-Structured LSTM [Paper]
Kai Sheng Tai, Richard Socher, and Christopher D. Manning, arXiv:1503.00075 / ACL 2015
Grid LSTM [Paper]
Nal Kalchbrenner, Ivo Danihelka, and Alex Graves,Grid Long Short-Term Memory, arXiv:1507.01526
Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber,LSTM: A Search Space Odyssey, arXiv:1503.04069
Zachary C. Lipton,A Critical Review of Recurrent Neural Networks for Sequence Learning, arXiv:1506.00019
Andrej Karpathy, Justin Johnson, Li Fei-Fei,Visualizing and Understanding Recurrent Networks, arXiv:1506.02078
Rafal Jozefowicz, Wojciech Zaremba, Ilya Sutskever,An Empirical Exploration of Recurrent Network Architectures, ICML, 2015.
Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur,Recurrent Neural Network based Language Model, Interspeech 2010 [Paper]
Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur,Extensions of Recurrent Neural Network Language Model, ICASSP 2011 [Paper]
Stefan Kombrink, Tomas Mikolov, Martin Karafiat, Lukas Burget,Recurrent Neural Network based Language Modeling in Meeting Recognition, Interspeech 2011 [Paper]
Jiwei Li, Minh-Thang Luong, and Dan Jurafsky,A Hierarchical Neural Autoencoder for Paragraphs and Documents, ACL 2015 [Paper], [Code]
Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury,Deep Neural Networks for Acoustic Modeling in Speech Recognition, IEEE Signam Processing Magazine 2012 [Paper]
Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton,Speech Recognition with Deep Recurrent Neural Networks, arXiv:1303.5778 / ICASSP 2013 [Paper]
Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio,Attention-Based Models for Speech Recognition, arXiv:1506.07503 [Paper]
Univ. Montreal [Paper]
Kyunghyun Cho, Bart van Berrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio,Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 / EMNLP 2014
Google [Paper]
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le,Sequence to Sequence Learning with Neural Networks, arXiv:1409.3215 / NIPS 2014
Univ. Montreal [Paper]
Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio,Neural Machine Translation by Jointly Learning to Align and Translate, arXiv:1409.0473 / ICLR 2015
Google + NYU [Paper]
Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba,Addressing the Rare Word Problem in Neural Machine Transltaion, ACL 2015
Lifeng Shang, Zhengdong Lu, and Hang Li,Neural Responding Machine for Short-Text Conversation, arXiv:1503.02364 / ACL 2015 [Paper]
Oriol Vinyals and Quoc V. Le,A Neural Conversational Model, arXiv:1506.05869 [Paper]
Ryan Lowe, Nissan Pow, Iulian V. Serban, and Joelle Pineau,The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems, arXiv:1506.08909 [Paper]
UCLA + Baidu [Web] [Paper-arXiv1], [Paper-arXiv2]
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L. Yuille,Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille,Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN), arXiv:1412.6632 / ICLR 2015
Univ. Toronto [Paper] [Web demo]
Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel,Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539 / TACL 2015
Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell,Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015
Google [Paper]
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan,Show and Tell: A Neural Image Caption Generator, arXiv:1411.4555 / CVPR 2015
Microsoft [Paper]
Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollar, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, Lawrence Zitnick, and Geoffrey Zweig,From Captions to Visual Concepts and Back, arXiv:1411.4952 / CVPR 2015
Microsoft [Paper-arXiv], [Paper-CVPR]
Xinlei Chen, and C. Lawrence Zitnick,Learning a Recurrent Visual Representation for Image Caption Generation
Xinlei Chen, and C. Lawrence Zitnick,Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation, CVPR 2015
Univ. Montreal + Univ. Toronto [Web] [Paper]
Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio,Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015
Idiap + EPFL + Facebook [Paper]
Remi Lebret, Pedro O. Pinheiro, and Ronan Collobert,Phrase-based Image Captioning, arXiv:1502.03671 / ICML 2015
UCLA + Baidu [Paper]
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille,Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692
Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell,Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015
UT Austin + UML + Berkeley [Paper]
Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko,Translating Videos to Natural Language Using Deep Recurrent Neural Networks, arXiv:1412.4729
Microsoft [Paper]
Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong Rui,Joint Modeling Embedding and Translation to Bridge Video and Language, arXiv:1505.01861
UT Austin + Berkeley + UML [Paper]
Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko,Sequence to Sequence--Video to Text, arXiv:1505.00487
Virginia Tech. + MSR [Web] [Paper]
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh,VQA: Visual Question Answering, arXiv:1505.00468 / CVPR 2015 SUNw:Scene Understanding workshop
Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz,Ask Your Neurons: A Neural-based Approach to Answering Questions about Images, arXiv:1505.01121
Univ. Toronto [Paper] [Dataset]
Mengye Ren, Ryan Kiros, and Richard Zemel,Exploring Models and Data for Image Question Answering, arXiv:1505.02074 / ICML 2015 deep learning workshop
Baidu + UCLA [Paper] [Dataset]
Hauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu,Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering, arXiv:1505.05612
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo J. Rezende, and Daan Wierstra,DRAW: A Recurrent Neural Network for Image Generation,ICML 2015 [Paper]
Angeliki Lazaridou, Dat T. Nguyen, R. Bernardi, and M. Baroni,Unveiling the Dreams of Word Embeddings: Towards Language-Driven Image Generation,arXiv:1506.03500 [Paper]
Lucas Theis and Matthias Bethge,Generative Image Modeling Using Spatial LSTMs,arXiv:1506.03478 [Paper]
A.Graves, G. Wayne, and I. Danihelka.,Neural Turing Machines,arXiv preprint arXiv:1410.5401 [Paper]
Jason Weston, Sumit Chopra, Antoine Bordes,Memory Networks,arXiv:1410.3916 [Paper]
Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus,End-To-End Memory Networks, arXiv:1503.08895 [Paper]
Wojciech Zaremba and Ilya Sutskever,Reinforcement Learning Neural Turing Machines,arXiv:1505.00521 [Paper]
Marvin Zhang, Sergey Levine, Zoe McCarthy, Chelsea Finn, Pieter Abbeel,Policy Learning with Continuous Memory States for Partially Observed Robotic Control,arXiv:1507.01273.[Paper]
Speech Recognition
OpenSLR(Open Speech and Language Resources)
Image Captioning
Image Question Answering - all based on MS COCO images
[Multilingual Image QA] : in Chinese, with English translation
作者:hzyido 链接:https://www.jianshu.com/p/54649dad0d30 來源:简书 简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
【RNN】资源汇总的更多相关文章
- Kinect开发资源汇总
Kinect开发资源汇总 转自: http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=254&highlight=kinec ...
- 微信小程序(应用号)资源汇总整理
微信小应用资源汇总整理 开源项目 WeApp - 微信小程序版的微信 wechat-weapp-redux-todos - 微信小程序集成Redux实现的Todo list wechat-weapp- ...
- 【特别推荐】Node.js 入门教程和学习资源汇总
这篇文章与大家分享一批很有用的 Node.js 入门教程和学习资源.Node 是一个服务器端的 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用 ...
- Github上PHP资源汇总大全,php学习的好资料
Github上PHP资源汇总大全,php学习的好资料 国外程序员ziadoz 在Github上收集整理了PHP的各种资源,内容包括模板.框架.数据库.安全等方面的库和工具.汇总了各种PHP资源,供各位 ...
- 知名杀毒软件Mcafee(麦咖啡)个人版 资源汇总兼科普(来自卡饭)
虽然早已不是用咖啡了,但我也实时关注的咖啡的一举一动,潜水看帖日久,发现小白众多,好多有价值的帖子淹没于帖海当中,甚是惋惜. 我有如下建议 1.咖啡区管理层,能否吧一些优秀的资源教程 ...
- GitHub最全的前端资源汇总仓库(包括前端学习、开发资源、求职面试等)
在GitHub上收集的最全的前端资源汇总(包括前端学习.前端开发资源.前端求职面试等) 个人结合github上各位大神分享的资源进行了简单的汇总整理,每一个条目下面都有丰富的资料,是前端学习.工作的好 ...
- 数据可视化的优秀入门书籍有哪些,D3.js 学习资源汇总
习·D3.js 学习资源汇总 除了D3.js自身以外,许多可视化工具包都是基于D3开发的,所以对D3的学习就显得很重要了,当然如果已经有了Javascript的经验,学起来也会不费力些. Github ...
- KbmMW资源汇总(更新中…)
KbmMW框架是收费的,不在此提供下载,如需购买,请自行联系作者Kim Madsen. 网址资源: 官网主页:http://www.components4programmers.com/product ...
- ENode简介与各种资源汇总
ENode简介与各种资源汇总 ENode是什么 ENode是一个.NET平台开源的应用开发框架,为开发人员提供了一套完整的基于DDD+CQRS+ES+(in-memory)+EDA架构风格的解决方案. ...
- 最新Node.js 资源汇总
Node.js 资源汇总 文档 Node.js 官方文档:http://nodejs.org/api/ Node.js 中文文档:http://nodejs.jsbin.cn/api/ Express ...
随机推荐
- CC2541之串口调试PM2.5传感器
1. CC2541通过串口和PM25设备PMS7003通信,串口9600波特率,手机APP显示数据一直是128,先检查蓝牙数据通路问题,数据通路没问题 2. 看下串口是否OK,串口也不通,看到宏定义Z ...
- vue项目使用echarts按需引入实现地图动态显示效果时,报错:TypeError: Cannot read property 'dataToPoint' of undefined
vue项目使用echarts按需引入实现地图动态显示效果时,报错:TypeError: Cannot read property 'dataToPoint' of undefined 借鉴了该大神的文 ...
- 面试:用 Java 逆序打印链表
昨天的 Java 实现单例模式 中,我们的双重检验锁机制因为指令重排序问题而引入了 volatile 关键字,不少朋友问我,到底为啥要加 volatile 这个关键字呀,而它,到底又有什么神奇的作用呢 ...
- C#(.NET) HMAC SHA256实现
HMAC SHA256的实现比较简单,可以用多种语言实现,下面我用C#语言实现,一种结果是居于BASE64,另外一种是居于64位. C# HMAC SHA256 (Base64) using Syst ...
- iOS开发简记(5):设备唯一标识与全局变量
这里记录两个iOS开发中经常用到的知识点,一个是唯一标识,一个是全局变量. (1)唯一标识 唯一标识一台设备(比如iPhone.iPad等)是一个基本的实现与业务上的需求,因为这个唯一标识在许多场景都 ...
- SoftWater——SDN+UnderWater系列论文一
---- SoftWater: Software-defined networking for next-generation underwater communication systems 来源: ...
- mysql常用命令小结
1.命令行中键入 net start/stop mysql 开启/停止mysql服务2.命令行中键入 mysql -u用户名 -p密码 连接数据库 (以下命令后须加分号';')3.用show语句显示当 ...
- awr format
AWR-Format工具 在Chrome高版本中配置使用AWR-Format for Chrome插件
- 【翻译】FluentValidation验证组件的使用
由于本文是翻译,所以将原文原原本本的搬上来,大家看原文有什么不懂的也可以对照这里. 给出地址:https://fluentvalidation.net/ FluentValidation fluent ...
- C#设计模式之10:状态模式
状态模式 状态模式将合适的Context(上下文)模拟成一个状态机,在这个状态机的内部,由Context来决定整个状态机的状态,再根据不同的状态执行不同的方法.在C#编译器的帮助下,很多语法糖的背后都 ...