poj1845 sumdiv (因数的和)
首先分解质因数,$A^B=p_1^{m_1B}p_2^{m_2B}...p_n^{m_nB}$
然后的话,它的所有因数的和就是$\prod{(1+p_i^1+p_i^2+...+p_i^n)}$
用一个等比数列求和公式,变成了$\prod{\frac{p_i^{m_iB+1}-1}{p_i-1}}$
但是要求逆元的话,它的模数很小,可能求不了
所以在算$p_i^{n+1}-1$的时候先模的是$mod*(p_i-1)$,然后直接除以$p_i-1$,一定能整除
最后再模一边mod就行了
#include<cstdio>
#include<cstring>
#include<algorithm>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e4,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} ll p[maxn];
ll n[maxn],a,b; inline ll fmul(ll x,ll y,ll p){
ll re=;
while(y){
if(y&) re=(re+x)%p;
x=(x+x)%p,y>>=;
}return re;
} inline ll fpow(ll x,ll m,ll p){
ll re=;
while(m){
if(m&) re=fmul(re,x,p);
x=fmul(x,x,p),m>>=;
}return re;
} int main(){
int i,j=,k;
a=rd(),b=rd();
for(i=;i*i<=a;i++){
if(a%i==) p[++j]=i;
while(a%i==) n[j]++,a/=i;
}if(a!=) p[++j]=a,n[j]=;
ll ans=;
for(i=;i<=j;i++){
ll x=fpow(p[i],n[i]*b+,(p[i]-)*P)+(p[i]-)*P-;
ans=ans*(x/(p[i]-)%P)%P;
}
printf("%d\n",(ans+P)%P);
return ;
}
poj1845 sumdiv (因数的和)的更多相关文章
- poj1845 Sumdiv
poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...
- POJ1845 Sumdiv(求所有因数和+矩阵快速幂)
题目问$A^B$的所有因数和. 根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.A^B=p1^(a1*B)*p2^(a2*B)*...*pn^ ...
- 约数之和(POJ1845 Sumdiv)
最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcW ...
- POJ1845 Sumdiv [数论,逆元]
题目传送门 Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 26041 Accepted: 6430 Des ...
- 【题解】POJ1845 Sumdiv(乘法逆元+约数和)
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...
- POJ1845 sumdiv 数论
正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要 ...
- POJ1845 Sumdiv 数学?逆元?
当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...
- 题解 poj1845 Sumdiv (数论) (分治)
传送门 大意:求A^B的所有因子之和,并对其取模 9901再输出 (这题又调了半天,把n和项数弄混了QAQ) 根据算数基本定理:A=(p1^k1)*(p2^k2)*(p3^k3)*...*(pn^kn ...
- noip2017考前整理(未完)
快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2 ...
随机推荐
- 我的集合学习笔记--ArrayList
一,ArrayList 实现自己的ArrayList:主要是添加方法,理解自动扩容机制 代码+注释 package com.amazing.jdk.learn2List.list_08_13; /** ...
- 【学习总结】Git学习-参考廖雪峰老师教程-期末总结
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- API接口TOKEN设计
首先需要知道API是什么? API(Application Programming Interface)即应用程序接口.你可以认为 API 是一个软件组件或是一个 Web 服务与外界进行的交互的接 ...
- Effective C++目录
条款1:视C++为一个语言联邦 条款2:尽量以const.enum.inline替换#define 条款3:尽可能使用const 条款4:确定对象使用前已先被初始化 条款5:了解C++默认编写并调用哪 ...
- Spring 的java 配置方式
Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1.1@Configuration 和 @Bean Spring的Java配置方式是通过 @Configuration 和 @ ...
- centso7 安装redmine
一.安装rvm ###安装rvm gpg --keyserver hkp://keys.gnupg.net --recv-keys 409B6B1796C275462A1703113804BB82D3 ...
- shiro使用ajax登陆实现,success但页面无法跳转的问题
首先:简述一下登陆的后台流程 页面提交——>对应controller中的方法——>对应Realm认证——>controller返回 json 这样,无论成功与否,都有返回值,可以用 ...
- qtp10 安装笔记
windows10系统安装QTP 10 1 QTP10 程序文件夹下,找到“setup”双击它运行安装程序-点击 否 继续安装 2 安装必要组件 3 下一步 选择安装程序目录-安装插件 直到完成安装 ...
- nginx 负载均衡(默认算法)
使用 nginx 的upstream模块只需要几步就可以实现一个负载均衡: 在 nginx 配置文件中添加两个server server { listen ; server_name 192.168. ...
- 为AI提供数据:构建2017数据创新的总结
本周在微软年度大会上,我们正在讨论组织如何依靠开发人员创造突破性的经验.随着大数据,云和人工智能的融合,创新与破坏正在加速,从未见过.数据是这一融合核心的关键战略资产.当结合云的无限计算能力和机器学习 ...