题目描述

小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M)。

小B 家住在西南角,学校在东北角。现在有T 个路口进行施工,小B 不能通过这些路口。小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走;而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条。由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值。

输入输出格式

输入格式:
第一行为四个整数N、M、T、P。

接下来的T 行,每行两个整数,表示施工的路口的坐标。

输出格式:
一行一个整数,表示路径数mod P 的值。

此题涉及到的数论知识有很多:扩展欧几里得算法、卢卡斯定理(组合数)、中国剩余定理(合并)。
当没有施工点时,答案即C(n+m,m)。
当有施工点时,考虑到j点能影响到i点当且仅当x[i]>=x[j]且y[i]>=y[j]时。影响的路径条数为f[i]=f[i]-f[j]*C(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x),它的解释为:到j点的路径条数乘上j点到i点的路径条数。我们把所有符合条件的j都减去(思考一下这样为什么不会重复减去)。计算之前先sort一遍就可以了,对于取模,卢卡斯定理计算就好了。
但模数不是质数的情况,中国剩余定理合并即可。

Code

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
long long mod,n,m,t,p,jie[],ni[],f[],x,y,a1,a2,a3,a4,ans;
struct fe
{
long long x,y;
}a[];
bool cmp(fe a,fe b)
{
return(a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
long long lucas(long long n,long long m)
{
if(m>n)return ;
if(!m)return ;
if(n<mod)return jie[n]*ni[m]*ni[n-m]%mod;
return lucas(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
void exgcd(long long a,long long b)
{
if(!b)
{
x=;
y=;
return;
}
exgcd(b,a%b);
long long k=x;
x=y;
y=k-a/b*y;
}
long long work1()
{
memset(f,,sizeof(f));
ni[]=ni[]=;
jie[]=;
for(int i=;i<=mod;++i)
{
jie[i]=(jie[i-]*i)%mod;
ni[i]=(mod-mod/i)*ni[mod%i]%mod;
}
for(int i=;i<=mod;++i)
ni[i]=ni[i]*ni[i-]%mod;
for(int i=;i<=t;++i)
{
f[i]=lucas(a[i].x+a[i].y,a[i].x)%mod;
for(int j=;j<i;++j)
if(a[i].x>=a[j].x&&a[i].y>=a[j].y)f[i]=(f[i]-f[j]*lucas(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x)%mod+mod)%mod;
}
return f[t];
}
long long bing(long long a,long long b,long long c)
{
x=;y=;
exgcd(a,c);
x=(x+c)%c;
return x*a%p*b%p;
}
int main()
{
cin>>n>>m>>t>>p;
for(int i=;i<=t;++i)scanf("%lld%lld",&a[i].x,&a[i].y);
a[++t].x=n,a[t].y=m;
sort(a+,a+t+,cmp);
if(p==)
{
mod=p;
cout<<work1();
}
else
{
mod=;a1=work1();
mod=;a2=work1();
mod=;a3=work1();
mod=;a4=work1();
ans=(ans+bing(p/,a1,))%p;//cout<<ans;
ans=(ans+bing(p/,a2,))%p;//<<ans;
ans=(ans+bing(p/,a3,))%p;//cout<<ans;
ans=(ans+bing(p/,a4,))%p;//cout<<ans;
cout<<ans;
}
return ;
}

BJWC2018上学路线的更多相关文章

  1. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  2. [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)

    传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...

  3. [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  4. P4478 [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  5. Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT

    首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...

  6. codevs2693 上学路线(施工)

    难度等级:黄金 2693 上学路线(施工) 题目描述 Description 问题描述 你所在的城市街道好像一个棋盘,有a条南北方向的街道和b条东西方向的街道. 南北方向a条街道从西到东依次编号为1到 ...

  7. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  8. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  9. BZOJ_1266_[AHOI2006]上学路线route_最小割

    BZOJ_1266_[AHOI2006]上学路线route_最小割 Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信 ...

随机推荐

  1. 【转】实现Nginx代理WSS协议

    https://blog.csdn.net/chopin407/article/details/52937645 后来看到了官网的教程(http://nginx.org/en/docs/http/we ...

  2. anaconda + VSCode + 生产环境配置

    1. 修改jupyter notebook 默认路径: 进入anaconda 命令行, jupyter notebook --generate-config   生成配置文件, 该文件在    本机用 ...

  3. [转帖]wifi 4G 和 蓝牙的区别

    作者:沈万马链接:https://www.zhihu.com/question/64739486/answer/225227838来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  4. Microsoft Visual Studio Ultimate 2013密钥

    Visual Studio Ultimate 2013 KEY(密钥):BWG7X-J98B3-W34RT-33B3R-JVYW9Visual Studio Premium 2013 KEY(密钥): ...

  5. 用Canvas实现一些简单的图片滤镜

    1.灰度滤镜 对于灰度滤镜的实现一般有三种算法 1) 最大值法:即新的颜色值R=G=B=Max(R,G,B),通过这种方法处理后的图片看起来亮度值偏高. 2) 平均值法:即新的颜色值R=G=B=(R+ ...

  6. /dev被异常删除的问题

    今天遇到一个问题,在执行某些操作后,发现经常报“read_urandom: /dev/urandom: open failed: No such file or directory”这个错误.后来查看 ...

  7. kubernetes常用命令

    #.查询信息 kubectl get [需要查询的服务]   node 节点componentstatuses 简写 cs 组件状态namespaces 简写 ns 名命空间pod pod信息 添加  ...

  8. Visual Studio2012调试时无法命中断点

    今天在调试代码的时候发现在Debug模式下无法命中断点,然后一步步去检查原因,最后发现是在项目-->属性-->生成-->高级-->调试信息被设置为None,然后在选项中将其选择 ...

  9. spring程序打包war,直接通过-jar启动,并指定spring.profiles.active参数控制多环境配置

    备注:spring boot有内嵌tomcat,jar项目可以用java -jar命令启动,war包也可以,且可以直接指定spring.profiles.active参数控制多环境配置 直接指定传参, ...

  10. mysql第一天【mysqldump导出数据和mysql导入数据】

    1.使用mysqldump导出数据到本地sql文件 在mysql>bin下执行: 例如: mysqldump -hrm-2ze8mpi5i65429l1qvo.mysql.rds.aliyunc ...