题目描述

小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M)。

小B 家住在西南角,学校在东北角。现在有T 个路口进行施工,小B 不能通过这些路口。小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走;而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条。由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值。

输入输出格式

输入格式:
第一行为四个整数N、M、T、P。

接下来的T 行,每行两个整数,表示施工的路口的坐标。

输出格式:
一行一个整数,表示路径数mod P 的值。

此题涉及到的数论知识有很多:扩展欧几里得算法、卢卡斯定理(组合数)、中国剩余定理(合并)。
当没有施工点时,答案即C(n+m,m)。
当有施工点时,考虑到j点能影响到i点当且仅当x[i]>=x[j]且y[i]>=y[j]时。影响的路径条数为f[i]=f[i]-f[j]*C(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x),它的解释为:到j点的路径条数乘上j点到i点的路径条数。我们把所有符合条件的j都减去(思考一下这样为什么不会重复减去)。计算之前先sort一遍就可以了,对于取模,卢卡斯定理计算就好了。
但模数不是质数的情况,中国剩余定理合并即可。

Code

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
long long mod,n,m,t,p,jie[],ni[],f[],x,y,a1,a2,a3,a4,ans;
struct fe
{
long long x,y;
}a[];
bool cmp(fe a,fe b)
{
return(a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
long long lucas(long long n,long long m)
{
if(m>n)return ;
if(!m)return ;
if(n<mod)return jie[n]*ni[m]*ni[n-m]%mod;
return lucas(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
void exgcd(long long a,long long b)
{
if(!b)
{
x=;
y=;
return;
}
exgcd(b,a%b);
long long k=x;
x=y;
y=k-a/b*y;
}
long long work1()
{
memset(f,,sizeof(f));
ni[]=ni[]=;
jie[]=;
for(int i=;i<=mod;++i)
{
jie[i]=(jie[i-]*i)%mod;
ni[i]=(mod-mod/i)*ni[mod%i]%mod;
}
for(int i=;i<=mod;++i)
ni[i]=ni[i]*ni[i-]%mod;
for(int i=;i<=t;++i)
{
f[i]=lucas(a[i].x+a[i].y,a[i].x)%mod;
for(int j=;j<i;++j)
if(a[i].x>=a[j].x&&a[i].y>=a[j].y)f[i]=(f[i]-f[j]*lucas(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x)%mod+mod)%mod;
}
return f[t];
}
long long bing(long long a,long long b,long long c)
{
x=;y=;
exgcd(a,c);
x=(x+c)%c;
return x*a%p*b%p;
}
int main()
{
cin>>n>>m>>t>>p;
for(int i=;i<=t;++i)scanf("%lld%lld",&a[i].x,&a[i].y);
a[++t].x=n,a[t].y=m;
sort(a+,a+t+,cmp);
if(p==)
{
mod=p;
cout<<work1();
}
else
{
mod=;a1=work1();
mod=;a2=work1();
mod=;a3=work1();
mod=;a4=work1();
ans=(ans+bing(p/,a1,))%p;//cout<<ans;
ans=(ans+bing(p/,a2,))%p;//<<ans;
ans=(ans+bing(p/,a3,))%p;//cout<<ans;
ans=(ans+bing(p/,a4,))%p;//cout<<ans;
cout<<ans;
}
return ;
}

BJWC2018上学路线的更多相关文章

  1. 洛谷 P4478 [BJWC2018]上学路线

    洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...

  2. [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)

    传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...

  3. [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  4. P4478 [BJWC2018]上学路线

    Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...

  5. Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT

    首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...

  6. codevs2693 上学路线(施工)

    难度等级:黄金 2693 上学路线(施工) 题目描述 Description 问题描述 你所在的城市街道好像一个棋盘,有a条南北方向的街道和b条东西方向的街道. 南北方向a条街道从西到东依次编号为1到 ...

  7. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  8. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  9. BZOJ_1266_[AHOI2006]上学路线route_最小割

    BZOJ_1266_[AHOI2006]上学路线route_最小割 Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信 ...

随机推荐

  1. Non-Volatile Register 非易失性寄存器 调用约定对应寄存器使用

    非易失性寄存器(Non-volatile register)是它的内容必须通过子程序调用被保存的一个寄存器.如果一个程序改变了一个非易失性寄存器的值,它必须保存在改变这个寄存器之前堆栈中保存旧的值和在 ...

  2. 建议2---编写pythonic代码

    (1)要避免劣化代码 1)避免只用大小写来区分不同的对象.如a是一个数值类型变量,A是String类型,虽在编码过程容易区分二者的含义,但这样做毫无益处,它不会给其他阅读代码的人带来多少便利. 2)避 ...

  3. DAY04、流程控制if、while、for

    一.if 判断 语法一: if 条件: # 以下是上一条if 的子代码块 print(子代码1) print(子代码2) print(子代码3) 示例: # 路边飘过一个生物,要不要表白? sex = ...

  4. How to install rime on Debian

    apt-get install ibus ibus-rime librime-data-wubi reboot cp ~/.config/ibus/rime/default.yaml ~/.confi ...

  5. SharePoint 2013 使用 RBS 功能将二进制大型对象 BLOB 存储在内容数据库外部。

    为每个内容数据库设置 BLOB 存储   启用并配置 FILESTREAM 之后,请按照以下过程在文件系统中设置 BLOB 存储.必须为要对其使用 RBS 的每个内容数据库设置 BLOB 存储. 设置 ...

  6. 51nod-1445-变色DNA(最短路)

    题意:题目是说从0到n-1,我还是习惯从1到n,所以以下我都这么写,大概题意就是(i, j)==‘Y’表示可以从i颜色变成j颜色,然后问我们最少删除几个会影响结果的‘Y’,能到n这个颜色: 没有意义的 ...

  7. 【NLP】自然语言处理:词向量和语言模型

    声明: 这是转载自LICSTAR博士的牛文,原文载于此:http://licstar.net/archives/328 这篇博客是我看了半年的论文后,自己对 Deep Learning 在 NLP 领 ...

  8. Eclipse环境配置与快捷命令

    1.VS.Chrome.Eclipse调试命令对比: VS: F5: 继续运行 F10: 单步执行 F11: 进入函数内部 Shift + F11: 由函数内部返回调用处 Chrome: F8: 继续 ...

  9. 使用Guava获取某一个类的指定超类上的泛型Type T

    package com.geostar.gfstack.operationcenter.log.common.hibernate; import com.geostar.gfstack.operati ...

  10. Spring注解与Java元注解小结

    注解 Annotation 基于注解的开发,使得代码简洁,可读性高,简化的配置的同时也提高了开发的效率,尤其是SpringBoot的兴起,随着起步依赖和自动配置的完善,更是将基于注解的开发推到了新的高 ...