BJWC2018上学路线
题目描述
小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M)。
小B 家住在西南角,学校在东北角。现在有T 个路口进行施工,小B 不能通过这些路口。小B 喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走;而小B又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条。由于答案可能很大,所以小B 只需要让你求出路径数mod P 的值。
输入输出格式
输入格式:
第一行为四个整数N、M、T、P。
接下来的T 行,每行两个整数,表示施工的路口的坐标。
输出格式:
一行一个整数,表示路径数mod P 的值。
此题涉及到的数论知识有很多:扩展欧几里得算法、卢卡斯定理(组合数)、中国剩余定理(合并)。
当没有施工点时,答案即C(n+m,m)。
当有施工点时,考虑到j点能影响到i点当且仅当x[i]>=x[j]且y[i]>=y[j]时。影响的路径条数为f[i]=f[i]-f[j]*C(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x),它的解释为:到j点的路径条数乘上j点到i点的路径条数。我们把所有符合条件的j都减去(思考一下这样为什么不会重复减去)。计算之前先sort一遍就可以了,对于取模,卢卡斯定理计算就好了。
但模数不是质数的情况,中国剩余定理合并即可。
Code
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
long long mod,n,m,t,p,jie[],ni[],f[],x,y,a1,a2,a3,a4,ans;
struct fe
{
long long x,y;
}a[];
bool cmp(fe a,fe b)
{
return(a.x==b.x)?(a.y<b.y):(a.x<b.x);
}
long long lucas(long long n,long long m)
{
if(m>n)return ;
if(!m)return ;
if(n<mod)return jie[n]*ni[m]*ni[n-m]%mod;
return lucas(n%mod,m%mod)*lucas(n/mod,m/mod)%mod;
}
void exgcd(long long a,long long b)
{
if(!b)
{
x=;
y=;
return;
}
exgcd(b,a%b);
long long k=x;
x=y;
y=k-a/b*y;
}
long long work1()
{
memset(f,,sizeof(f));
ni[]=ni[]=;
jie[]=;
for(int i=;i<=mod;++i)
{
jie[i]=(jie[i-]*i)%mod;
ni[i]=(mod-mod/i)*ni[mod%i]%mod;
}
for(int i=;i<=mod;++i)
ni[i]=ni[i]*ni[i-]%mod;
for(int i=;i<=t;++i)
{
f[i]=lucas(a[i].x+a[i].y,a[i].x)%mod;
for(int j=;j<i;++j)
if(a[i].x>=a[j].x&&a[i].y>=a[j].y)f[i]=(f[i]-f[j]*lucas(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x)%mod+mod)%mod;
}
return f[t];
}
long long bing(long long a,long long b,long long c)
{
x=;y=;
exgcd(a,c);
x=(x+c)%c;
return x*a%p*b%p;
}
int main()
{
cin>>n>>m>>t>>p;
for(int i=;i<=t;++i)scanf("%lld%lld",&a[i].x,&a[i].y);
a[++t].x=n,a[t].y=m;
sort(a+,a+t+,cmp);
if(p==)
{
mod=p;
cout<<work1();
}
else
{
mod=;a1=work1();
mod=;a2=work1();
mod=;a3=work1();
mod=;a4=work1();
ans=(ans+bing(p/,a1,))%p;//cout<<ans;
ans=(ans+bing(p/,a2,))%p;//<<ans;
ans=(ans+bing(p/,a3,))%p;//cout<<ans;
ans=(ans+bing(p/,a4,))%p;//cout<<ans;
cout<<ans;
}
return ;
}
BJWC2018上学路线的更多相关文章
- 洛谷 P4478 [BJWC2018]上学路线
洛谷 P4478 [BJWC2018]上学路线 原题 神仙题orz,竟然没有1A....容斥+卢卡斯+crt?? 首先用容斥做,记\(f[i][0/1]\)表示到i号点经过了奇数/偶数个点的方案数,因 ...
- [luogu4478 BJWC2018] 上学路线 (容斥原理+拓展lucas)
传送门 Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路 ...
- [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- P4478 [BJWC2018]上学路线
Description 小B 所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M). 小B 家住在西南角,学校在东北角.现在有T 个路口进行施工,小B 不能通过这些路口.小B ...
- Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT
首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点: ...
- codevs2693 上学路线(施工)
难度等级:黄金 2693 上学路线(施工) 题目描述 Description 问题描述 你所在的城市街道好像一个棋盘,有a条南北方向的街道和b条东西方向的街道. 南北方向a条街道从西到东依次编号为1到 ...
- BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)
第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- BZOJ_1266_[AHOI2006]上学路线route_最小割
BZOJ_1266_[AHOI2006]上学路线route_最小割 Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信 ...
随机推荐
- php之常用扩展总结
在此总结,开发中经常使用到的扩展,来进行日常PHP的开发工作 bcmath(精确数值处理) bz2 calendar Core ctype curl date dom ereg exif filein ...
- Jquery 选择器 特殊字符 转义字符
1.Jquery 选择器 id包含特殊字符,加双斜线 \\ 例 <input type="text" id="dbo_HouseInfo.HouseResour ...
- java对象的四种引用:强引用、软引用、弱引用和虚引用
在JDK1.2之前,创建的对象只有在处于可触及(reachable)的状态下,才能被程序使用.也就是说,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.垃圾回收器一旦发现这些无用对象,就会对 ...
- java 工厂模式 转载
下面介绍三种设计模式,简单工厂模式,工厂方法模式,抽象工厂模式 思考如下场景: 有一天,林同学准备去买笔记本,他到商城发现有两款电脑他特别喜欢, 一款是 Macbook Pro, 另一款是 Surfa ...
- Collections斗地主案例
package com.zhangxueliang.doudizhu; import java.util.ArrayList; import java.util.Collections; public ...
- Day 4-8 hashlib加密模块
HASH Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射 ...
- java回调机制——基本理解
回调(diao):往回调用,反向调用. 英文 call back.call:调用,back:返回,往返. 回调的意思就是杀个回马枪...... 回调(callback),既然是往回调用,那自然有一个正 ...
- Python rsa公私钥生成 rsa公钥加解密(分段加解密)-私钥加签验签实战
一般现在的SAAS服务提供现在的sdk或api对接服务都涉及到一个身份验证和数据加密的问题.一般现在普遍的做法就是配置使用非对称加密的方式来解决这个问题,你持有SAAS公司的公钥,SAAS公司持有你的 ...
- java 中 的 字节流!
package cn.zhouzhou; import java.io.FileInputStream; import java.io.FileNotFoundException; import ja ...
- 在一般类中通过XmlWebApplicationContext对象获取应用部署上下文Context
XmlWebApplicationContext xwac = (XmlWebApplicationContext) ContextLoader.getCurrentWebApplicationCon ...