小R和B神正在玩一款游戏。这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的。换句话说,游戏的地图是一棵有N个节点的树。

游戏中有一种道具叫做侦查守卫,当一名玩家在一个点上放置侦查守卫后,它可以监视这个点以及与这个点的距离在D以内的所有点。这里两个点之间的距离定义为它们在树上的距离,也就是两个点之间唯一的简单路径上所经过边的条数。在一个点上放置侦查守卫需要付出一定的代价,在不同点放置守卫的代价可能不同。

现在小R知道了所有B神可能会出现的位置,请你计算监视所有这些位置的最小代价。

Solution

神题。

注意到d不是很大,所以可以设计一个NK的状态:dp[i][j]表示i这个点为根的子树已经处理完了,它还能在向上覆盖j个点的最小代价。

但是还有可能会出现子树之间相互覆盖的情况,所以我们用f[i][j]表示以i为根的子树向下还有j个点没有覆盖的最小代价。

转移:

考虑dp数组如何转移。

dp[u][j]<-min(dp[u][j]+f[v][j](u刚好能够向下覆盖j个),dp[v][j+1]+f[u][j+1]);

相当于是我们把v合并到了当前子树中。

f数组可以直接累加答案,f[i][j]+=f[v][j-1]。

最后结合一下贪心的思想,对于f数组,j越大答案应越小,对于dp数组,j越小答案也应越小,做完之后取一下min

然后还要注意一下边界,dp[u][0]=0.dp[u][~]=w[u].当vis[u]=1时f[u][0]=dp[u][0]=w[u];

Code

#include<iostream>
#include<cstdio>
#define N 500003
#define inf 0x3f3f3f3f
using namespace std;
int x,y,w[N],head[N],tot,f[N][],d,dp[N][],n,m,tag[N];
struct zzh{
int n,to;
}e[N<<];
inline void add(int u,int v){
e[++tot].n=head[u];
e[tot].to=v;
head[u]=tot;
}
void dfs(int u,int fa){
if(tag[u])dp[u][]=f[u][]=w[u];
for(int i=;i<=d;++i)dp[u][i]=w[u];
dp[u][d+]=inf;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa){
int v=e[i].to;
dfs(v,u);
for(int j=d;j>=;--j)dp[u][j]=min(dp[u][j]+f[v][j],dp[v][j+]+f[u][j+]);
for(int j=d;j>=;--j)dp[u][j]=min(dp[u][j],dp[u][j+]);
f[u][]=dp[u][];
for(int j=;j<=d+;++j)f[u][j]+=f[v][j-];
for(int j=;j<=d+;++j)f[u][j]=min(f[u][j],f[u][j-]);
}
}
inline int rd(){
int x=;bool f=;char c=getchar();
while(!isdigit(c)){
if(c=='-')f=;
c=getchar();
}
while(isdigit(c)){
x=(x<<)+(x<<)+(c^);
c=getchar();
}
return f?-x:x;
}
int main(){
n=rd();d=rd();
for(int i=;i<=n;++i)w[i]=rd();
m=rd();
for(int i=;i<=m;++i)x=rd(),tag[x]=;
for(int i=;i<n;++i)x=rd(),y=rd(),add(x,y),add(y,x);
dfs(,);
cout<<f[][];
return ;
}

[JLOI2016/SHOI2016]侦察守卫(树形dp)的更多相关文章

  1. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  2. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

  3. Luogu3267 [JLOI2016/SHOI2016]侦察守卫 (树形DP)

    树形DP,一脸蒙蔽.看了题解才发现它转移状态与方程真不愧神题! \(f[x][y]\)表示\(x\)的\(y\)层以下的所有点都已经覆盖完,还需要覆盖上面的\(y\)层的最小代价. \(g[x][y] ...

  4. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

  5. P3267 [JLOI2016/SHOI2016]侦察守卫

    $ \color{#0066ff}{ 题目描述 }$ 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地图是一棵有N个节点的 ...

  6. BZOJ 4557 JLOI2016 侦查守卫 树形dp

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...

  7. BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4557 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点, ...

  8. 【BZOJ4557】[JLoi2016]侦察守卫 树形DP

    [BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...

  9. [JLOI2016/SHOI2016]侦察守卫

    嘟嘟嘟 这道题可以说是[HNOI2003]消防局的设立的升级版.距离从2改为了d. 辛亏d只有20,这也就是一个切入点. 令f[u][j]表示u四周 j - 1的距离需要被覆盖,g[u][j]表示u可 ...

随机推荐

  1. PHPer未来路在何方...

    PHP 从诞生到现在已经有20多年历史,从Web时代兴起到移动互联网退潮,互联网领域各种编程语言和技术层出不穷, Node.js . GO . Python 不断地在挑战 PHP 的地位.这些技术的推 ...

  2. 微信QQ打开网页时提示用浏览器打开

    微信QQ打开网页时提示用浏览器打开 一,需求分析 1.1,使用微信或QQ打开网址时,无法在微信或QQ内打开常用下载软件,手机APP等.故此需要在微信qq里提示 二,功能实现 2.1 html实现 &l ...

  3. 关于spring的源码的理解

    从最基础的Hello World开始. spring的Hello World就三行代码: public void test() { ApplicationContext context = new C ...

  4. 解决 linux 下面解压缩 中文文件名乱码问题的方法 unzip -O CP936

    Linux 解压缩 zip包中文目录出现乱码的问题. 出现问题如图示: unzip -O CP936 xxx.zip 用这种方式处理一下就好了.

  5. day 7-16 单表查询

    一.准备工作 先把表建立好,方便一会查询. create table emp( id int not null unique auto_increment, name varchar(20) not ...

  6. Java——scoket通讯

    Socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket是TCP/IP协议通信的抽象层,所以我们还需要了解TCP协议 传输层协议 TCP: ...

  7. 不使用DataContext直接将ViewModels绑定到ItemsControl控件

    在常规的MVVM设计模式中,都是通过DataContext将ViewModels的一个对象绑定到View的DataContext中,从而完成相应地绑定,在本文中我们将通过另外的一种思路来将ViewMo ...

  8. ConnectTimeout和ReadTimeout所代表的意义

    参考:ConnectTimeout和ReadTimeout所代表的意义 ConnectTimeout 指的是建立连接所用的时间,适用于网络状况正常的情况下,两端连接所用的时间. 在java中,网络状况 ...

  9. mvc 学前必知

    MVC无人不知,可很多程序员对MVC的概念的理解似乎有误,换言之他们一直在错用MVC,尽管即使如此软件也能被写出来,然而软件内部代码的组织方式却是不科学的,这会影响到软件的可维护性.可移植性,代码的可 ...

  10. 学习 Spring (十六) AOP API

    Spring入门篇 学习笔记 Spring AOP API 是 Spring 1.2 历史用法,现在仍然支持 这是 Spring AOP 基础,现在的用法也是基于历史的,只是更简便了 Pointcut ...