STL::sort函数实现
声明:本文参考链接:STL::sort实现。
排序是面试中经常被问及的算法基础知识点,虽然实际应用中不会直接使用,但是理解这些简单的算法知识对于更复杂更实用的算法有一定的帮助,毕竟面试总不能问的太过深入,那么这些知识点就显得很重要了。我们在程序中经常利用sort给序列排序,那么你知道它是什么实现的吗?
函数声明
#include <algorithm> template <class RandomAccessIterator>
void sort (RandomAccessIterator first, RandomAccessIterator last); template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);
来自sort - C++ Reference。STL提供了两种调用方式,一种是使用默认的 < 操作符比较,一种可以自定义比较函数。可是为什么它通常比我们自己写的排序要快那么多呢?
实现原理
STL中的sort不是普通的快排,除了对普通的快速排序进行优化,它还结合了插入排序和堆排序。根据不同的数量级别以及不同情况,能自动选用合适的排序方法。当数据量较大时采用快速排序,分段递归。一旦分段后的数据量小于某个阀值,为避免递归调用带来过大的额外负荷,便会改用插入排序;而如果递归层次过深,有出现最坏情况的倾向,还会改用堆排序。
普通的快速排序
参考我的另一篇随笔:十大排序算法,有对各个排序算法的分析。其中快速排序的描述如下:
- 从序列中选取排序基准(pivot);
- 对序列进行排序,所有比基准值小的摆放在基准左边,所有比基准值大的摆在基准的右边,序列分为左右两个子序列。称为分区操作(partition);
- 递归,对左右两个子序列分别进行快速排序。
其中分区操作的方法通常采用两个迭代器head和tail,head从头端往尾端移动,tail从尾端往头端移动,当head遇到大于等于pivot的元素就停下来,tail遇到小于等于pivot的元素也停下来,若head迭代器仍然小于tail迭代器,即两者没有交叉,则互换元素,然后继续进行相同的动作,向中间逼近,直到两个迭代器交叉,结束一次分割。
快速排序最关键的地方在于基准的选择,最坏的情况发生在分割时产生了一个空的区间,这样就完全没有达到分割的效果。STL采用的做法称为median-of-three,即取整个序列的首、尾、中央三个地方的元素,以其中值作为基准。
内省式排序 Introsort
不当的基准选择会导致不当的分割,会使快速排序恶化为 O(n^2)。David R.Musser于1996年提出一种混合式排序算法:Introspective Sorting(内省式排序),简称IntroSort,其行为大部分与上面所说的median-of-three Quick Sort完全相同,但是当分割行为有恶化为二次方的倾向时,能够自我侦测,转而改用堆排序,使效率维持在堆排序的 O(nlgn),又比一开始就使用堆排序来得好。
代码剖析
sort 函数中最后通过调用 __sort 函数,下面是 __sort 函数的具体实现,默认使用<操作符。
template<typename _RandomAccessIterator, typename _Compare>
inline void
__sort(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
if (__first != __last)
{
std::__introsort_loop(__first, __last,
std::__lg(__last - __first) * 2,
__comp);
std::__final_insertion_sort(__first, __last, __comp);
}
}
其中的 std::__introsort_loop 便是上面介绍的内省式排序,其第三个参数中所调用的函数 __lg() 便是用来控制分割恶化情况,具体功能类似求lg(n)(取下整),意味着快速排序的递归调用最多 2*lg(n) 层。
1.内省式:__introsort_loop
__sort函数首先调用内省式排序,__introsort_loop 函数的实现如下:
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Size, typename _Compare>
void
__introsort_loop(_RandomAccessIterator __first,
_RandomAccessIterator __last,
_Size __depth_limit, _Compare __comp)
{
while (__last - __first > int(_S_threshold))
{
if (__depth_limit == 0)
{
std::__partial_sort(__first, __last, __last, __comp);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition_pivot(__first, __last, __comp);
std::__introsort_loop(__cut, __last, __depth_limit, __comp);
__last = __cut;
}
}
- 首先判断元素规模是否大于阀值_S_threshold,_S_threshold是一个常整形的全局变量,值为16,表示若元素规模小于等于16,则结束内省式排序算法,返回sort函数,改用插入排序 __final_insertion_sort。
- 若元素规模大于_S_threshold,则判断递归调用深度是否超过限制。若已经到达最大限制层次的递归调用,则改用堆排序。代码中的 __partial_sort 即用堆排序实现。
- 若没有超过递归调用深度,则调用函数 __unguarded_partition_pivot 对当前元素做一趟快速排序,并返回基准位置。
- 快排之后,再递归对右半部分调用内省式排序算法。然后回到while循环,对左半部分进行排序。源码写法和我们一般的写法不同,但原理是一样的,这是很明显的尾递归优化,需要注意。
2.快速排序:__unguarded_partition_pivot
快速排序函数 __unguarded_partition_pivot 的代码如下:
/// This is a helper function...
template<typename _RandomAccessIterator, typename _Compare>
_RandomAccessIterator
__unguarded_partition(_RandomAccessIterator __first,
_RandomAccessIterator __last,
_RandomAccessIterator __pivot, _Compare __comp)
{
while (true)
{
while (__comp(__first, __pivot))
++__first;
--__last;
while (__comp(__pivot, __last))
--__last;
if (!(__first < __last))
return __first;
std::iter_swap(__first, __last);
++__first;
}
} /// This is a helper function...
template<typename _RandomAccessIterator, typename _Compare>
inline _RandomAccessIterator
__unguarded_partition_pivot(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
_RandomAccessIterator __mid = __first + (__last - __first) / 2;
std::__move_median_to_first(__first, __first + 1, __mid, __last - 1,
__comp);
return std::__unguarded_partition(__first + 1, __last, __first, __comp);
}
这个代码比较容易理解,快速排序,并返回枢轴位置。__unguarded_partition()
函数采用的便是上面所讲的使用两个迭代器的方法,将序列分为左右两个子序列。其中还注意到 __move_median_to_first 函数,就是之前提到的 median-of-three,目的是从头部、中部、尾部三个数中选出中间值作为“基准”,基准保存在 __first 中,实现代码如下:
/// Swaps the median value of *__a, *__b and *__c under __comp to *__result
template<typename _Iterator, typename _Compare>
void
__move_median_to_first(_Iterator __result,_Iterator __a, _Iterator __b,
_Iterator __c, _Compare __comp)
{
if (__comp(__a, __b))
{
if (__comp(__b, __c))
std::iter_swap(__result, __b);
else if (__comp(__a, __c))
std::iter_swap(__result, __c);
else
std::iter_swap(__result, __a);
}
else if (__comp(__a, __c))
std::iter_swap(__result, __a);
else if (__comp(__b, __c))
std::iter_swap(__result, __c);
else
std::iter_swap(__result, __b);
}
3.堆排序:__partial_sort
之前在 __introsort_loop 函数中看到如果递归调用深度是否超过限制,若已经到达最大限制层次的递归调用,则改用堆排序。代码中的 __partial_sort 即用堆排序实现,其部分实现代码如下(堆排序的代码特别多):
/// This is a helper function for the sort routines.
template<typename _RandomAccessIterator, typename _Compare>
void
__heap_select(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last, _Compare __comp)
{
std::__make_heap(__first, __middle, __comp);
for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
if (__comp(__i, __first))
std::__pop_heap(__first, __middle, __i, __comp);
} template<typename _RandomAccessIterator, typename _Compare>
void
__sort_heap(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Compare __comp)
{
while (__last - __first > 1)
{
--__last;
std::__pop_heap(__first, __last, __last, __comp);
}
} template<typename _RandomAccessIterator, typename _Compare>
inline void
__partial_sort(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last,
_Compare __comp)
{
std::__heap_select(__first, __middle, __last, __comp);
std::__sort_heap(__first, __middle, __comp);
}
4.插入排序:__final_insertion_sort
经过__introsort_loop排序之后,元素规模小于_S_threshold,最后再次回到 __sort 函数,执行插入排序__final_insertion_sort,其实现代码如下:
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Compare>
void
__final_insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
if (__last - __first > int(_S_threshold))
{
std::__insertion_sort(__first, __first + int(_S_threshold), __comp);
std::__unguarded_insertion_sort(__first + int(_S_threshold), __last,
__comp);
}
else
std::__insertion_sort(__first, __last, __comp);
}
结束语
好了,今天就到这里了,相信大家对STL sort
也有了一定的了解,如果发现任何错误,欢迎大家批评指正,一起交流!
本文版权归作者AlvinZH和博客园所有,欢迎转载和商用,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
STL::sort函数实现的更多相关文章
- 分享stl sort函数坑点导致coredump问题
在<Effective STL> 的条款21中就有讨论:永远让比较函数对相同元素返回false! 也就是说在实现stl sort函数自定义比较器时,一定要满足这种严格弱序化的问题.
- STL sort 函数实现详解
作者:fengcc 原创作品 转载请注明出处 前几天阿里电话一面,被问到STL中sort函数的实现.以前没有仔细探究过,听人说是快速排序,于是回答说用快速排序实现的,但听电话另一端面试官的声音,感觉不 ...
- STL sort()函数
C++之所以得到这么多人的喜欢,是因为它既具有面向对象的概念,又保持了C语言高效的特点.STL 排序算法同样需要保持高效.因此,对于不同的需求,STL提供的不同的函数,不同的函数,实现的算法又不尽相同 ...
- STL——sort函数简介
参考:http://blog.csdn.net/s030501408/article/details/5329477 0)与C标准库qsort的比较:http://bbs.csdn.net/topic ...
- STL sort 函数实现详解 ZZ
前几天阿里电话一面,被问到STL中sort函数的实现.以前没有仔细探究过,听人说是快速排序,于是回答说用快速排序实现的,但听电话另一端面试官的声音,感觉不对劲,知道自己回答错了.这几天特意看了一下,在 ...
- STL sort函数的用法
sort在STL库中是排序函数,有时冒泡.选择等O(N^2)算法会超时时,我们可以使用STL中的快速排序O(N log N)完成排序 sort在<algorithm>库里面,原型如下: t ...
- C++ STL sort()函数用法
C++STL提供的在里的排序函数,有以下两种形式 此外还提供有稳定排序版本stable_sort(),用法类似. 第一种形式: template <class RandomAccessItera ...
- C++ STL sort 函数的用法
sort 在 STL 库中是排序函数,有时冒泡.选择等 $\mathcal O(n^2)$ 算法会超时时,我们可以使用 STL 中的快速排序函数 $\mathcal O(n \ log \ n)$ 完 ...
- STL——sort函数的实现原理
实现原理 sort结合了快速排序.堆排序.直接插入排序三种排序方法. 根据不同的数量级别以及不同情况,能自动选用合适的排序方法.当数据量较大时采用快速排序,分段递归.一旦分段后的数据量小于某个阀值,为 ...
随机推荐
- ConcurrentQueue并发队列
表示线程安全的先进先出 (FIFO) 集合 System.Collections.Concurrent 命名空间提供多个线程安全集合类.当有多个线程并发访问集合时,应使用这些类代替 System.Co ...
- python3 第三十二章 - 标准库概览
1. 操作系统接口 os 模块提供很多函数与操作系统进行交互︰ >>> import os >>> os.getcwd() # 返回当前的工作目录 'C:\\Pyt ...
- navicat for mysql 连接报错1251详细解决步骤
我的是8.0的版本,因为比较新的mysql采用新的保密方式所以旧的似乎不能用,改密码方式:use mysql:ALTER USER 'root'@'localhost' IDENTIFIED WITH ...
- 【Mybatis】MyBatis之表的关联查询(五)
本章介绍Mybatis之表的关联查询 一对一关联 查询员工信息以及员工的部门信息 1.准备表employee员工表,department部门表 CREATE TABLE `employee` ( `i ...
- 【Selenium】【BugList10】smtp发送邮件问题汇总:550/535/554
[场景] 通过126邮箱向QQ邮箱发送HTML格式邮件 [代码1] from email.mime.text import MIMEText from email.header import Head ...
- TestNG的使用方法
本文转载自于:https://blog.csdn.net/qq_24373725/article/category/7432624 TestNG介绍 TestNG是Java中的一个测试 ...
- java操作docker示例(docker-java)
1.首先要修改docker服务器的 /usr/lib/systemd/system/docker.service,加入紫色框的配置 2.下载docker-java 的github源码 git clon ...
- 在ExtJS中查看视频
listeners: { render: function() { win.update( '<video src="' + path+ '" width="100 ...
- RSA 前段加密 java 后台解密 已调试通过
本人整理网上的.好多网上的调不通.在这里把调试好的贴出来. 1. 异步获取公钥(后台获取):你也可以将公钥串写在页面上: var publicKey = null; $.ajax({ url: c ...
- HDU 2147 P/N博弈
点这里去做题 如图 找必胜点和必败点, 1.终点为必胜点 2.所有能一步走到必胜点的都是必败点 3.每一步都只能走到必败点的是必胜点 #include<bits/stdc++.h> usi ...