P3195 [HNOI2008]玩具装箱TOY

第一道斜率优化题。

首先一个基本的状态转移方程是

要使f[i]最小,即b最小。

对于每个j,可以表示为一个点。

然后我们取固定斜率时截距最小的即可,高中线性规划。

单调队列维护下凸包。

然后每次二分出j,转移。

记得给(0,L * L)赋初值。

记得开long long

++,--最好别随便用,编译器的不同会让你爆0...

 #include <cstdio>

 typedef long long LL;
const int N = ; LL sum[N], g[N], p[N], top;
LL f[N], y[N]; inline double slope(int i, int j) {
return ((double)(y[j] - y[i])) / (g[j] - g[i]);
} inline int get(int i) {
if(i == ) {
return ;
}
double k = 2.0 * g[i];
int l = , r = top, mid;
while(l < r) {
mid = (l + r) / ;
//printf("%lf %lf \n", slope(p[mid], p[mid + 1]), k);
if(slope(p[mid], p[mid + ]) < k) {
l = mid + ;
}
else {
r = mid;
}
}
//printf("i = %d r = %d j = %d \n", i, r, p[r]);
return p[r];
} int main() {
//freopen("in.in", "r", stdin);
LL n, L;
scanf("%lld%lld", &n, &L);
L++;
for(int i = ; i <= n; i++) {
LL x;
scanf("%lld", &x);
sum[i] = sum[i - ] + x;
g[i] = i + sum[i];
}
y[] = L * L;
for(int i = ; i <= n; i++) {
// f[i] = f[j] + (g[i] - g[j] - L) ^ 2
int j = get(i); f[i] = f[j] + (g[i] - g[j] - L) * (g[i] - g[j] - L);
y[i] = f[i] + (g[i] + L) * (g[i] + L);
//printf("y[%d] = %d \n", i, y[i]); p[++top] = i;
while(top > && slope(p[top - ], p[top - ]) >= slope(p[top - ], p[top])) {
p[top - ] = p[top];
top--;
}
} /*for(int i = 1; i <= n; i++) {
printf("%lld ", f[i]);
}
puts("");*/
printf("%lld", f[n]);
return ;
}

AC代码

[update20181208]今天又考了一次玩具装箱,发现了一个问题.......怎么能把点的坐标直接带入到斜截式里面啊!!!!

只知道y - y0 = k(x - x0),从来没听过y0 = kx0 + b啊啊啊!!!

关于上面那个的解释:(感谢某蒋姓巨佬为我讲解)

上面那个式子化简为2gi * gj + C = F(j)

考虑有某条直线过点(gj, F(j)),且方程为kx + b = y,其中k = 2gi

那么将点带入,可得:k * gj + b = F(j)

故上面那个等式即为直线的方程。

y - F(j) = 2gi(x - gj)

y - F(j) = 2gi * x - 2gi * gj

然后反正瞎搞一搞就行了啦我也不管了啊啊啊啊阿斜率优化好难啊啊我到底在写什么东西啊

洛谷P3195 玩具装箱的更多相关文章

  1. 洛谷P3195 玩具装箱TOY

    题目大意: 有n个数,要将他们分成若干段,每一段的cost定义为: cost=r-l+ΣCk (k∈[r,l]) 该段的最终花费是:(cost-L)^2; 给出L,n,C(1~n),总共的最小花费. ...

  2. 洛谷P3195||bzoj1010 [HNOI2008]玩具装箱TOY

    洛谷P3195 bzoj1010 设s数组为C的前缀和 首先$ans_i=min_{j<i}\{ans_j+(i-j-1+s_i-s_j-L)^2\}$ (斜率优化dp)参考(复读)https: ...

  3. 洛谷 P3195 [HNOI2008] 玩具装箱

    链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum ...

  4. 洛谷P3195 [HNOI2008] 玩具装箱 [DP,斜率优化,单调队列优化]

    题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N ...

  5. 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP

    题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...

  6. 洛谷P3195 [HNOI2008]玩具装箱TOY(单调队列优化DP)

    题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  7. [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解 ...

  8. 洛谷P3195 [HNOI2008]玩具装箱TOY 斜率优化

    Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 ...

  9. 洛谷 P3195 [HNOI2008]玩具装箱TOY

    题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求 ...

随机推荐

  1. docker遇到的问题以及docker 操作镜像的基本操作

    root@localhost ~]# systemctl status docker.service ● docker.service - Docker Application Container E ...

  2. Django--CRM--菜单展示, 删除合并, 权限展示

    一 . 菜单展示 二 . 合并删除 我们可以把所有的删除都合并成一个函数这样就会减少很多的代码. 思路: 在url里面需要传两个参数,一个是要删的id 一个是名字 三 .权限展示 我们要实现两个功能 ...

  3. drf信号量

    Django信号量回顾及drf信号量常用操作 一.在写接口视图时,保存/删除/更新数据前后需要对序列化后的数据进行处理的方法: 1.重写mixins.CreateModelMixin中恩的create ...

  4. 对C#调用C++的dll的一点思考

    最近在对接C++程序的时候碰到了一些问题,然后花了一段时间才解决,今天就这些小问题来做一个总结,很多时候由于对另外一种开发语言的不熟悉,会在使用的过程中遇到很多的问题,这些问题看似简单但是背后却有很多 ...

  5. StringBuilder与String有哪些区别?

    System.String具备不可修改性,在程序中这样的特性容易产生性能上的问题.针对这个问题.NET提供的StringBuilder类可以解决类似的问题. String 和 StringBuilde ...

  6. 集合之LinkedHashSet(含JDK1.8源码分析)

    一.前言 上篇已经分析了Set接口下HashSet,我们发现其操作都是基于hashMap的,接下来看LinkedHashSet,其底层实现都是基于linkedHashMap的. 二.linkedHas ...

  7. Jackson将对象转换为json字符串时,设置默认的时间格式

    maven需要的依赖: <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifac ...

  8. java构造器和构建器

    本文摘自:https://blog.csdn.net/wh2827991/article/details/79013115 在实例化一个类的过程中,通常会遇到多个参数的构造函数,但如果有些参数是非必需 ...

  9. 转载 大话pcie

    原文https://blog.csdn.net/abcamus/article/details/76167747 一.PCIe DMA机制 PCIe控制器也提供DMA(Direct Memory ac ...

  10. How to write to an event log by using Visual C#

    using System; using System.Diagnostics; namespace WriteToAnEventLog_csharp { /// Summary description ...