Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course
Train/Dev/Test set
Bias/Variance
Regularization
- L2 regularation
- drop out
- data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像)
L2 regularization:
Forbenius Norm.
上面这张图提到了weight decay 的概念
Weight Decay: A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
why regulation works(intuition)?
Dropout regularization:
下面的图只显示了forward propagation过程中使用dropout, back propagation 同样也需要drop out.
在对 test set 做预测的时候,不需要 drop out.
Early stopping: 缺点是违反了正交原则(Orthoganalization, 不同角度互不影响计算), 因为early stopping 同时关注Optimize cost func J, 和 Not overfit 两个任务,不是分开解决。一般建议用L2 regularization, 但是缺点是迭代次数多.
Normalizing input
就是把input x 转化成方差,公式如下
Vanishing/Exploding gradients
deep neural network suffer from these issues. they are huge barrier to training deep neural network.
There is a partial solution to solve the above problem but help a lot which is careful choice how you initialize the weights. 主要目的是使得weight W[l]不要比1太大或者太小,这样最后在算W的指数级的时候就很大程度改善vanishing 和 exploding的问题.
如果用的是Relu activation, 就用中下部的蓝框的内容(He Initialization),如果是tanh activation 就用右边的蓝框的内容(Xavier initialization),也有些人对tanh用右边第二种
Weight Initialization for Deep Networks
Xavier initialization
Gradient Checking
Ref:
1. Coursera
Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course的更多相关文章
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...
- 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记
Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking
Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记
第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...
随机推荐
- golang go语言通道类型的通道示例 通道的通道
几点注意:go的无缓存通道 通道make 创建后,即使里面是空的,也可以取里面内容.但是程序会被阻塞. 通道的规则是没人取,是不能往里面放的.放的线程会阻塞. 最外层的requestChan相当于一个 ...
- css border 三角形
当元素的宽高都为0时,只写border,就会发现形成的正方形有4个三角形组成. .triangle { width: 0px; height: 0px; border: 20px solid tran ...
- 洛谷P1117 优秀的拆分
题意:求一个字符串中有多少形如AABB的子串. 解:嗯...我首先极度SB的想了一个后缀自动机套线段树启发式合并的做法,想必会TLE. 然后跑去看题解,发现实在是妙不可言... 显然要对每个位置求出向 ...
- Vector使用测试
1.测试vector是否自动释放分配的空间 vector有大致两类申请空间的方式,一是vector(n,T()),一是vector(p,p+n)(p是自己申请的空间的指针). 其中第一种估计肯定会释放 ...
- Luogu P3975 [TJOI2015]弦论
题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...
- Python继承扩展内置类
继承最有趣的应用是给内置类添加功能,在之前的Contact类中,我们将联系人添加到所有联系人的列表里,如果想通过名字来搜索,那么就可以在Contact类添加一个方法用于搜索,但是这种方法实际上属于列表 ...
- 简洁架构的思想,基于go实现
https://manuel.kiessling.net/2012/09/28/applying-the-clean-architecture-to-go-applications/ 从 Clean- ...
- 2017-12-15python全栈9期第二天第七节之运算符
#!/user/bin/python# -*- coding:utf-8 -*-print(3>4 or 4<3 and 1==1)print(1<2 and 3 <4 or ...
- 剑指Offer_编程题_17
题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) /* struct TreeNode { int val; struct TreeNode * ...
- nGrinder windows agent / linux agent
s ngrinder部署 https://blog.csdn.net/yue530tomtom/article/details/82113558 Windows机器启动不了ngrinder-agent ...