Train/Dev/Test set

Bias/Variance

  

    

Regularization 

有下面一些regularization的方法.
  1. L2 regularation
  2. drop out
  3. data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像)

L2 regularization:

  

Forbenius Norm.

上面这张图提到了weight decay 的概念

Weight Decay: A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.

why regulation works(intuition)?

  

Dropout regularization:

下面的图只显示了forward propagation过程中使用dropout, back propagation 同样也需要drop out.

  

在对 test set 做预测的时候,不需要 drop out.

  

  

Early stopping: 缺点是违反了正交原则(Orthoganalization, 不同角度互不影响计算), 因为early stopping 同时关注Optimize cost func J, 和 Not overfit 两个任务,不是分开解决。一般建议用L2 regularization, 但是缺点是迭代次数多.

  

Normalizing input

就是把input x 转化成方差,公式如下

  

Vanishing/Exploding gradients

deep neural network suffer from these issues. they are huge barrier to training deep neural network.

There is a partial solution to solve the above problem but help a lot which is careful choice how you initialize the weights. 主要目的是使得weight W[l]不要比1太大或者太小,这样最后在算W的指数级的时候就很大程度改善vanishing 和 exploding的问题.

如果用的是Relu activation, 就用中下部的蓝框的内容(He Initialization),如果是tanh activation 就用右边的蓝框的内容(Xavier initialization),也有些人对tanh用右边第二种

Weight Initialization for Deep Networks

Xavier initialization

Gradient Checking

  

Ref:

1. Coursera

Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course的更多相关文章

  1. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

  2. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  3. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  4. 《Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization》课堂笔记

    Lesson 2 Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization 这篇文章其 ...

  5. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

  8. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

  9. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

随机推荐

  1. golang go语言通道类型的通道示例 通道的通道

    几点注意:go的无缓存通道 通道make 创建后,即使里面是空的,也可以取里面内容.但是程序会被阻塞. 通道的规则是没人取,是不能往里面放的.放的线程会阻塞. 最外层的requestChan相当于一个 ...

  2. css border 三角形

    当元素的宽高都为0时,只写border,就会发现形成的正方形有4个三角形组成. .triangle { width: 0px; height: 0px; border: 20px solid tran ...

  3. 洛谷P1117 优秀的拆分

    题意:求一个字符串中有多少形如AABB的子串. 解:嗯...我首先极度SB的想了一个后缀自动机套线段树启发式合并的做法,想必会TLE. 然后跑去看题解,发现实在是妙不可言... 显然要对每个位置求出向 ...

  4. Vector使用测试

    1.测试vector是否自动释放分配的空间 vector有大致两类申请空间的方式,一是vector(n,T()),一是vector(p,p+n)(p是自己申请的空间的指针). 其中第一种估计肯定会释放 ...

  5. Luogu P3975 [TJOI2015]弦论

    题目链接 \(Click\) \(Here\) 题目大意: 重复子串不算的第\(k\)大子串 重复子串计入的第\(k\)大子串 写法:后缀自动机. 和\(OI\) \(Wiki\)上介绍的写法不太一样 ...

  6. Python继承扩展内置类

    继承最有趣的应用是给内置类添加功能,在之前的Contact类中,我们将联系人添加到所有联系人的列表里,如果想通过名字来搜索,那么就可以在Contact类添加一个方法用于搜索,但是这种方法实际上属于列表 ...

  7. 简洁架构的思想,基于go实现

    https://manuel.kiessling.net/2012/09/28/applying-the-clean-architecture-to-go-applications/ 从 Clean- ...

  8. 2017-12-15python全栈9期第二天第七节之运算符

    #!/user/bin/python# -*- coding:utf-8 -*-print(3>4 or 4<3 and 1==1)print(1<2 and 3 <4 or ...

  9. 剑指Offer_编程题_17

    题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构)   /* struct TreeNode { int val; struct TreeNode * ...

  10. nGrinder windows agent / linux agent

    s ngrinder部署 https://blog.csdn.net/yue530tomtom/article/details/82113558 Windows机器启动不了ngrinder-agent ...