codeforces 161D Distance in Tree 树上点分治
链接:https://codeforces.com/contest/161/problem/D
题意:给一个树,求距离恰好为$k$的点对是多少
题解:对于一个树,距离为$k$的点对要么经过根节点,要么跨过子树的根节点,于是考虑树分治
用类似poj1741的想法,可以推出:
对于任意一棵子树,其根节点记为$C$,其子树中:
记距离$C$距离之和为$k$的点对数量$S_{c}$
记$C$儿子节点$C_1...C_n$的子树中,距离$C_i$距离为$k-2$的点对数量为$S'_{c_i}$
其符合条件的点对数量即为$S_{c}-\sum_1^n S'_{c_i}$
(网上这题,主流的树分治写法好像不是这个...有些看不懂啊....)
树上点分治参考我之前的题解:https://www.cnblogs.com/nervendnig/p/10106333.html
速度还是很可以的
相比dp的话,dp收到$K$大小的限制,如果$K$的大小和N同级别,就很难朴素的DP了,可能就要考虑树上倍增DP(实际上好像不能倍增)
而分治显然并不受限制
具体参见代码:
#include <bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define fi first
#define se second
#define mp make_pair
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define IO ios::sync_with_stdio(false)
#define rep(ii,a,b) for(int ii=a;ii<=b;++ii)
#define per(ii,a,b) for(int ii=b;ii>=a;--ii)
#define forn(x,i) for(int i=head[x];i;i=e[i].next)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#define inline inline __attribute__( \
(always_inline, __gnu_inline__, __artificial__)) \
__attribute__((optimize("Ofast"))) __attribute__((target("sse"))) __attribute__((target("sse2"))) __attribute__((target("mmx")))
using namespace std;
#define tpyeinput int
char nc() {static char buf[1000000],*p1=buf,*p2=buf;return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;}
void read(tpyeinput &sum) {register char ch=nc();int flag=1;sum=0;while(ch<'0'||ch>'9') {if(ch=='-') flag=-1;ch=nc();}while(ch>='0'&&ch<='9') sum=(sum<<3)+(sum<<1)+(ch-48),ch=nc();sum*=flag;}
void read(tpyeinput &num1,tpyeinput &num2) {read(num1);read(num2);}
const int maxn=1e5+10,maxm=2e5+10;
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
const double PI=acos(-1.0);
//head
int casn,n,m,k,mid,allnode;
struct node {int to,next;}e[maxm];int head[maxn],nume;
void add(int a,int b){e[++nume]=(node){b,head[a]};head[a]=nume;}
int sz[maxn],maxt,deep[maxn],vis[maxn],cnt;
ll ans;
void getc(int now,int pre){
sz[now]=1;
for(int i=head[now];i;i=e[i].next){
if(e[i].to==pre||vis[e[i].to])continue;
getc(e[i].to,now);
sz[now]+=sz[e[i].to];
}
int tmp=max(sz[now]-1,allnode-sz[now]);
if(maxt>tmp) maxt=tmp,mid=now;
}
void dfs(int now,int pre,int len,int dis){
deep[++cnt]=dis;
if(dis>=len)return;
for(int i=head[now];i;i=e[i].next){
if(e[i].to==pre||vis[e[i].to])continue;
dfs(e[i].to,now,len,dis+1);
}
}
ll cal(int rt,int pre,int len){
if(len<=0) return len==0;
cnt=0;
dfs(rt,pre,len,0);
ll res=0;
int num[507]{};
rep(i,1,cnt) num[deep[i]]++;
rep(i,1,cnt) res+=num[len-deep[i]];
return res;
}
void dc(int rt){
vis[rt]=1;
ans+=cal(rt,0,k);
for(int i=head[rt];i;i=e[i].next){
if(vis[e[i].to]) continue;
ans-=cal(e[i].to,rt,k-2);
allnode=sz[e[i].to],maxt=n;
getc(e[i].to,rt);dc(mid);
}
}
int main() {
//#define test
#ifdef test
auto _start = chrono::high_resolution_clock::now();
freopen("in.txt","r",stdin);freopen("out.txt","w",stdout);
#endif
read(n,k);
int a,b;
rep(i,1,n-1){
read(a,b);
add(a,b);add(b,a);
}
allnode=n;
maxt=INF;
getc(1,0);
dc(mid);
printf("%lld",ans/2);
#ifdef test
auto _end = chrono::high_resolution_clock::now();
cerr << "elapsed time: " << chrono::duration<double, milli>(_end - _start).count() << " ms\n";
fclose(stdin);fclose(stdout);system("out.txt");
#endif
return 0;
}
codeforces 161D Distance in Tree 树上点分治的更多相关文章
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
- Codeforces 161D Distance in Tree(树型DP)
题目链接 Distance in Tree $k <= 500$ 这个条件十分重要. 设$f[i][j]$为以$i$为子树,所有后代中相对深度为$j$的结点个数. 状态转移的时候,一个结点的信息 ...
- Codeforces 161D Distance in Tree(树的点分治)
题目大概是,给一棵树,统计距离为k的点对数. 不会DP啊..点分治的思路比较直观,啪啪啪敲完然后AC了.具体来说是这样的: 树上任何两点的路径都可以看成是一条过某棵子树根的路径,即任何一条路径都可以由 ...
- Codeforces 161D Distance in Tree
题目大意:给出一棵n个节点的树,统计树中长度为k的路径的条数(1<=n<=50000 , 1<=k<=500) 思路:树分治! #include<cstdio> # ...
- CodeForces 161D Distance in Tree【树形DP】
<题目链接> 题目大意:一颗无向无环树,有n个顶点,求其中距离为k的点对数是多少,(u,v)与(v,u)为同一点对. #include <cstdio> #include &l ...
- POJ 1741 Tree 树上点分治
题目链接:http://poj.org/problem?id=1741 题意: 给定一棵包含$n$个点的带边权树,求距离小于等于K的点对数量 题解: 显然,枚举所有点的子树可以获得答案,但是朴素发$O ...
- CodeForces161D: Distance in Tree(树分治)
A tree is a connected graph that doesn't contain any cycles. The distance between two vertices of a ...
- 【Codeforces 715C】Digit Tree(点分治)
Description 程序员 ZS 有一棵树,它可以表示为 \(n\) 个顶点的无向连通图,顶点编号从 \(0\) 到 \(n-1\),它们之间有 \(n-1\) 条边.每条边上都有一个非零的数字. ...
- CF 161D Distance in Tree 树形DP
一棵树,边长都是1,问这棵树有多少点对的距离刚好为k 令tree(i)表示以i为根的子树 dp[i][j][1]:在tree(i)中,经过节点i,长度为j,其中一个端点为i的路径的个数dp[i][j] ...
随机推荐
- Spark源码剖析 - SparkContext的初始化(八)_初始化管理器BlockManager
8.初始化管理器BlockManager 无论是Spark的初始化阶段还是任务提交.执行阶段,始终离不开存储体系.Spark为了避免Hadoop读写磁盘的I/O操作成为性能瓶颈,优先将配置信息.计算结 ...
- 前端面试题整理—HTML/CSS篇
1.简述一下你对HTML语义化的理解 1)用正确的标签做正确的事情 2)html语义化让页面的内容结构化,结构更清晰,便于对浏览器.搜索引擎解析 3)即使在没有样式CSS情况下也以一种文档格式显示,并 ...
- Android允许在UI线程中使用网络访问
StrictMode.ThreadPolicy policy=new StrictMode.ThreadPolicy.Builder().permitAll().build(); StrictMode ...
- AD软件使用心得
1.在更新原理图之前一定要标记所有器件,否则无法生成PCB器件. 2.学会用sch list网表来批量修改器件名称 3.布线的面
- luogu P3899 [湖南集训]谈笑风生
传送门 nmyzd,mgdhls,bnmbzdgdnlql,a,wgttxfs 对于一个点\(a\),点\(b\)只有可能是他的祖先或者在\(a\)子树里 如果点\(b\)是\(a\)祖先,那么答案为 ...
- mybatis 动态sql 插入报错
1. 值为null必须制定jdbcType 单条执行的话,可以考虑把值为null的字段去掉 2. 值的类型无法解析 比如oracle.sql.TIMESTAMP类型,需转为java.sql.TIMES ...
- spring cloud(学习笔记)微服务启动错误(1)
今天下午在启动spring cloud微服务的时候,报了这个错误: Error starting ApplicationContext. To display the auto-configurati ...
- Http 持久连接与 HttpClient 连接池
一.背景 HTTP协议是无状态的协议,即每一次请求都是互相独立的.因此它的最初实现是,每一个http请求都会打开一个tcp socket连接,当交互完毕后会关闭这个连接. HTTP协议是全双工的协议, ...
- Java基础_0303:封装性初步
class Book { // 定义一个新的类 private String title; // 书的名字 private double price; // 书的价格 public void getI ...
- JSON字符串解析成JSON数据格式
在JS中将JSON的字符串解析成JSON数据格式,一般有两种方式: 1.一种为使用eval()函数. 2. 使用Function对象来进行返回解析. 使用eval函数来解析,并且使用jquery的ea ...