================
Cycling Roads
================
 

Description

When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?

Input

The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.

Output

Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.

Sample Input

input output
4 2
0 0
1 0
1 1
0 1
1 3
4 2
YES
4 3
0 0
1 0
1 1
0 1
1 2
2 1
3 4
NO
3 2
0 0
1 0
1 1
1 3
3 2
YES

这道题主要是判相交,只要相交就把它压入并查集,一开始我是用了cnt去记录已经相交的节点,后来发现不行,因为新加如的一条线如果加进去了,它的另外一个端点也会加入,导致cnt记录的数值不准。于是用了另外一个数组c[i]去记录以i为根的所有子节点的个数。

在判断相交这里,一开始没有注意到新加入一条线段时,应该判断所有点是否在该线段上,如果端点在该线段上,则把它加入,加了OnSegment()判断之后就AC了。

#include<cstdio>
#include<cmath>
#include<iostream>
using namespace std;
#define maxn 205
struct point
{
double x,y;
point(double x = ,double y = ):x(x),y(y){}
}p[maxn]; struct Line
{
point a,b;
int pos1,pos2;
Line(){}
Line(point x,point y,int ppos1,int ppos2){ a = x; b = y; pos1 = ppos1; pos2 = ppos2;}
}line[maxn]; int n,m,cnt;
int par[maxn];
int c[maxn]; typedef point Vector;
Vector operator +(Vector A,Vector B){ return Vector(A.x+B.x, A.y+B.y); }
Vector operator -(Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator *(Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator /(Vector A,double p){ return Vector(A.x/p,A.y/p); }
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x) < eps) return ;
else return x < ? -:;
}
bool operator == (const point &a,const point &b)
{
return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ;
}
double dot(Vector A,Vector B){ return A.x*B.x + A.y*B.y; }
double cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; } bool OnSegment(point p,Line l)
{
return dcmp(cross(l.a-p,l.b-p)) == && dcmp(dot(l.a-p,l.b-p)) < ;
}
bool SegmentProperIntersection(Line l1,Line l2)
{
point a1 = l1.a;
point a2 = l1.b;
point b1 = l2.a;
point b2 = l2.b;
double c1 = cross(a2-a1,b1-a1);
double c2 = cross(a2-a1,b2-a1);
double c3 = cross(b2-b1,a1-b1);
double c4 = cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < && dcmp(c3)*dcmp(c4) < ;
} void init()
{
for(int i = ; i <= n; i++)
c[i] = ;
for(int i = ; i < maxn;i++)
par[i] = i;
}
int Find(int x)
{
if(par[x] != x)
{
return par[x]=Find(par[x]);
}
else return x;
} void Merge(int a,int b)
{
int t1 = Find(a);
int t2 = Find(b);
if(t1 != t2)
{
par[t2] = t1;
c[t1] += c[t2];
//printf("%d %d merge\n",a,b);
//return 1;
}
//return 0;
} void input()
{
int x,y; for(int i = ; i <= n; i++)
{
double x,y;
scanf("%lf%lf",&x,&y);
p[i] = point(x,y);
}
for(int i = ; i < m; i++)
{
scanf("%d%d",&x,&y);
line[i] = Line(p[x],p[y],x,y);
for(int j = ; j <= n; j++)
{
if(OnSegment(p[j],line[i])) Merge(j,x);
}
Merge(x,y);
}
} void deal()
{
for(int i = ; i < m; i++)
{
for(int j = i + ; j < m; j++)
{
if(SegmentProperIntersection(line[i],line[j]))
{
Merge(line[j].pos1,line[i].pos1);
//Merge(line[j].pos2,line[i].pos1);
}
}
} } int main()
{
//freopen("input.txt","r",stdin);
while(scanf("%d%d",&n,&m) == )
{
init();
input();
deal();
if(c[Find()] == n) printf("YES\n");
else printf("NO\n");
} return ;
}

Ural 1966 Cycling Roads的更多相关文章

  1. URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集

    F - Cycling Roads     Description When Vova was in Shenzhen, he rented a bike and spent most of the ...

  2. URAL 1966 Cycling Roads 计算几何

    Cycling Roads 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/F Description When Vova was ...

  3. URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)

    意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...

  4. Cycling

    Cycling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  5. Ural 1004 Sightseeing Trip

    Sightseeing Trip Time Limit: 2000ms Memory Limit: 16384KB This problem will be judged on Ural. Origi ...

  6. poj 1251 Jungle Roads (最小生成树)

    poj   1251  Jungle Roads  (最小生成树) Link: http://poj.org/problem?id=1251 Jungle Roads Time Limit: 1000 ...

  7. Jungle Roads[HDU1301]

    Jungle Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  8. POJ1947 Rebuilding Roads[树形背包]

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 11495   Accepted: 5276 ...

  9. Constructing Roads——F

    F. Constructing Roads There are N villages, which are numbered from 1 to N, and you should build som ...

随机推荐

  1. 2018-2019-2 20165315《网络对抗技术》Exp2 后门原理与实践

    2018-2019-2 20165315<网络对抗技术>Exp2 后门原理与实践 一.实验任务 使用netcat获取主机操作Shell,cron启动 使用socat获取主机操作Shell, ...

  2. SpringCloud微服务负载均衡与网关

    1.使用ribbon实现负载均衡ribbon是一个负载均衡客户端 类似nginx反向代理,可以很好的控制htt和tcp的一些行为.Feign默认集成了ribbon. 启动两个会员服务工程,端口号分别为 ...

  3. go安装依赖包

    实例 比如先切换到 $GOPATH 的 src 目录,cd $GOPATH/src,然后按需要下载: git clone --depth 1 https://github.com/golang/too ...

  4. 压缩软件WinRar 5.5 x64去广告方式【窗口类名下断】

    工具及使用软件逆向逻辑原始软件使用效果:查看软件窗口类名查看WinRAR.exe信息x64dbg逆向破解软件(非附加调试)处理掉广告注册函数处理掉广告创建函数保存修改后的镜像破解效果 工具及使用软件 ...

  5. shp2pgsql向postgresql导入shape数据

    1. 准备好Shape文件(不仅仅是.shp文悠扬,还要有其他相关数据文件,包括.shx..prj..dbf文件). 2. 使用命令将Shape数据转换为*.sql文件 shp2pgsql -s 38 ...

  6. python 微信轰炸

    from __future__ import unicode_literals import requests import itchat import time def get_news(): ur ...

  7. 人脸识别1:n对比 (二)

    本项目采用了百度AI 人脸识别 第三方接口,实现了自选本地手机相册图片上传人脸(faceSet中添加人脸) 和 自选本地手机相册图片寻找出集合中相似度最高的一个face,可返回比对相似度.位置等信息. ...

  8. EasyPR源码剖析(5):车牌定位之偏斜扭转

    一.简介 通过颜色定位和Sobel算子定位可以计算出一个个的矩形区域,这些区域都是潜在车牌区域,但是在进行SVM判别是否是车牌之前,还需要进行一定的处理.主要是考虑到以下几个问题: 1.定位区域存在一 ...

  9. python 数据库mysql、redis及发送邮件

    python 关系型数据库链接使用--mysql import pymysql # 引用mysql模块 # 创建连接,指定数据库的ip地址,账号.密码.端口号.要操作的数据库.字符集coon = py ...

  10. pip更换源

    #mkdir ~/.pipcd .pipvi pip.conf [global]trusted-host =  pypi.tuna.tsinghua.edu.cnindex-url = https:/ ...