1.[TJOI2018]数学计算

傻逼题

会发现符合线段树分治的特点

每个数的操作范围都是连续的

然后就等于区间修改了

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mid ((h+t)>>1)
namespace IO
{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int Z,C=-;
template<class T>void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z);
}
IL void wer1()
{
sr[++C]=' ';
}
IL void wer2()
{
sr[++C]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
int n,mo;
const int N=2e5;
int s[N],t[N];
struct sgt{
ll lazy[N*];
void clear()
{
rep(i,,N*-) lazy[i]=;
}
void change(int x,int h,int t,int h1,int t1,int k)
{
if (h1<=h&&t<=t1)
{
(lazy[x]*=k)%=mo; return;
}
if (h1<=mid) change(x*,h,mid,h1,t1,k);
if (mid<t1) change(x*+,mid+,t,h1,t1,k);
}
ll query(int x,int h,int t,int pos,ll k)
{
(k*=lazy[x])%=mo;
if (h==t) return k;
if (pos<=mid) return query(x*,h,mid,pos,k);
else return query(x*+,mid+,t,pos,k);
}
}S;
int main()
{
int T;
read(T);
rep(tt,,T)
{
read(n); read(mo); me(s); me(t);
int kk,x;
rep(i,,n)
{
read(kk); read(x);
if (kk==)
{
s[i]=x; t[i]=n;
} else t[x]=i-;
}
S.clear();
rep(i,,n)
if (t[i])
S.change(,,n,i,t[i],s[i]);
rep(i,,n)
wer(S.query(,,n,i,1ll)),wer2();
}
fwrite(sr,,C+,stdout);
return ;
}

2.[TJOI2018]智力竞赛

出题人语文水平真没话说

就是求dag最小可相交路径覆盖(网上还有人说有向图那这根本做不了)

比较显然的是如果我们确定了要取哪些点就变成了上述问题

按照网络流的一般套路应该是逐渐增大然后逐渐流量增大的

但是路径覆盖等于n-最大流 所以流量是在不断变小的

于是我们只能选择二分答案了

另外可相交路径覆盖

需要先求个传递闭包,然后再连边

如果不想交路径覆盖 就直接连边

连边方法就是将点拆成入点和出点 从一个的出点往另一个的入点连边

由于floyd没有用bitset写。。。 权值没有离散化。。。

常数挺大的。。反正这种题能过就行了。。。

代码:

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for (int i=h;i<=t;i++)
#define dep(i,t,h) for (int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mid ((h+t)>>1)
namespace IO
{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int Z,C=-;
template<class T>void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z);
}
IL void wer1()
{
sr[++C]=' ';
}
IL void wer2()
{
sr[++C]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
int n,mo;
const int N=2e5;
int s[N],t[N];
struct sgt{
ll lazy[N*];
void clear()
{
rep(i,,N*-) lazy[i]=;
}
void change(int x,int h,int t,int h1,int t1,int k)
{
if (h1<=h&&t<=t1)
{
(lazy[x]*=k)%=mo; return;
}
if (h1<=mid) change(x*,h,mid,h1,t1,k);
if (mid<t1) change(x*+,mid+,t,h1,t1,k);
}
ll query(int x,int h,int t,int pos,ll k)
{
(k*=lazy[x])%=mo;
if (h==t) return k;
if (pos<=mid) return query(x*,h,mid,pos,k);
else return query(x*+,mid+,t,pos,k);
}
}S;
int main()
{
int T;
read(T);
rep(tt,,T)
{
read(n); read(mo); me(s); me(t);
int kk,x;
rep(i,,n)
{
read(kk); read(x);
if (kk==)
{
s[i]=x; t[i]=n;
} else t[x]=i-;
}
S.clear();
rep(i,,n)
if (t[i])
S.change(,,n,i,t[i],s[i]);
rep(i,,n)
wer(S.query(,,n,i,1ll)),wer2();
}
fwrite(sr,,C+,stdout);
return ;
}

3.

好像老早写过了就不看了

4.[TJOI2018]异或

我觉得我有点傻逼。。。

首先这题显然是0/1trie去匹配

然后关键在于怎么实现子树和链操作

于是我很自然的想到了树链剖分+线段树(每个节点上一课trie)

于是成功达到了时间$nlog^3{n}$ 空间$nlog^2{n}$的傻逼境界

不过开O2还3s再加上树剖的常数小我觉得是跑的过得??

但是空间就gg了啊 我们得记录ls,rs  n*30*20*2这个没法艹过去

虽然trie的空间可能到不了n*30但感觉上还是过不去所以就不写了

另外如果空间只超过一点的话我记得有个技巧是把ls,rs压成一个unsigned int+一个unsigned short int

然后合成一个ll 再分成两个23位

所以还是看正解吧。。

因为是trie树 所以支持差分

那么建立可持久化0/1trie然后差分做就可以了

对于子树是按照dfn建立可持久,链是按照父亲建立

代码:

tjoi2018的更多相关文章

  1. bzoj 5338: [TJOI2018]xor (树链剖分+可持久化01Trie)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5338 题面: 5338: [TJOI2018]xor Time Limit: 30 Sec  ...

  2. [模板] dp套dp && bzoj5336: [TJOI2018]party

    Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...

  3. 洛谷P4590 [TJOI2018]游园会(状压dp LCS)

    题意 题目链接 Sol 这个题可能是TJOI2018唯一的非模板题了吧.. 考虑LCS的转移方程, \[f[i][j] = max(f[i - 1][j], f[i][j - 1], f[i - 1] ...

  4. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  5. 【BZOJ5337】[TJOI2018]str(动态规划,哈希)

    [BZOJ5337][TJOI2018]str(动态规划,哈希) 题面 BZOJ 洛谷 题解 就很呆... 显然按层\(dp\),如果能够匹配上就进行转移,直接哈希判断是否能够匹配就好了... #in ...

  6. 【BZOJ5336】[TJOI2018]party(动态规划)

    [BZOJ5336][TJOI2018]party(动态规划) 题面 BZOJ 洛谷 题解 这题好神仙啊... 考虑普通的\(LCS\)的\(dp\),\(f[i][j]=\max\{f[i-1][j ...

  7. 【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)

    [BZOJ5335][TJOI2018]智力竞赛(二分图匹配) 题面 BZOJ 洛谷 题解 假装图不是一个DAG想了半天,.发现并不会做. 于是假装图是一个DAG. 那么显然就是二分答案,然后求一个最 ...

  8. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  9. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

随机推荐

  1. Liunx 网络神器之抓包 --tcpdump

    作者:邓聪聪 简介 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中 ...

  2. vs 快捷键操作

    各个版本可能不同,以vs 2013为例. 1.调试时,调出即时窗口:[Ctrl+Alt+i] 2.注释/取消注释:[Ctrl+K Ctrl+C]/[Ctrl+K Ctrl+U]

  3. struts2框架学习之第一天

    day01 Struts2概述 1 什么是框架 试想一下,人与人之间不同之处多,还是相同之处多呢?当然是相同之处多,不同之处少!人都有头,而且头都在脖子上面! 软件之间也是相同之处多,不同之处少,框架 ...

  4. Food HDU - 4292 网络流 拆点建图

    http://acm.hdu.edu.cn/showproblem.php?pid=4292 给一些人想要的食物和饮料,和你拥有的数量,问最多多少人可以同时获得一份食物和一份饮料 写的时候一共用了2种 ...

  5. inux下配置rsyncd服务

    创建配置文件 touch /etc/rsyncd/rsyncd.conf #主配置文件 touch /etc/rsyncd/rsyncd.secrets #用户名密码文件,一组用户一行,用户名和密码使 ...

  6. HDU 5377 (Exgcd + 原根)

    转载自:大牛 知道一个定理了 a ^ x = y (mod p) ===>>   logd(a) * x = logd(y) (mod O(p) )      d 为 p 的 原根,  O ...

  7. MySql 使用规范推荐(转)

    在java应用开发中深知数据库的重要性,绝大多数情况下数据库的性能决定了程序的性能,前期如果埋下的坑越多到后期会成为整个程序的瓶颈,所以希望java开发者一定要重视!!!! 一.基础规范 1.使用In ...

  8. 解决log4j和self4j日志报错Could NOT find resource [logback.groovy]及Could NOT find resource [logback-test.xml]问题

    事件背景: 我的log4j和self4j按照网上的配置,配置成功了,但是报错如下: 让我很是郁闷,于是找了一大圈........ 解决方案: 总结来说就是:log4j.properties和logba ...

  9. 搭建python的虚拟环境

    文章连接:https://www.cnblogs.com/zlsgh/p/8485848.html ubuntu系统下Python虚拟环境的安装和使用        前言:进行python项目开发的时 ...

  10. MVVM 简介

    转:https://objccn.io/issue-13-1/ 所以,MVVM 到底是什么?与其专注于说明 MVVM 的来历,不如让我们看一个典型的 iOS 是如何构建的,并从那里了解 MVVM: 我 ...