【400】numpy.pad 为数组加垫(迷宫类题目)
举例说明:
import numpy as np
a = np.zeros((3, 4), dtype=int)
a array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]]) # pad(array, pad_width, mode, **kwargs)
# array: array_like
# pad_width: ((1, 2), (3, 4))
# 1: width of top
# 2: width of bottom
# 3: width of left
# 4: width of right
# mode: str or function
# 'constant': Pads with a constant value
# constant_values: Used in 'constant'. The values to set the padded values for each axis.
# ((1, 2), (3, 4))
# 1: value of top
# 2: value of bottom
# 3: vlaue of left
# 4: vlaue of right
np.pad(a, ((1, 2), (3, 4)), 'constant', constant_values=((1, 2), (3, 4))) array([[3, 3, 3, 1, 1, 1, 1, 4, 4, 4, 4],
[3, 3, 3, 0, 0, 0, 0, 4, 4, 4, 4],
[3, 3, 3, 0, 0, 0, 0, 4, 4, 4, 4],
[3, 3, 3, 0, 0, 0, 0, 4, 4, 4, 4],
[3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4],
[3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4]]) # (1, 2)
# top:bottom=1:2
# left:right=1:2
np.pad(a, (1, 2), 'constant', constant_values=(1, 2)) array([[1, 1, 1, 1, 1, 2, 2],
[1, 0, 0, 0, 0, 2, 2],
[1, 0, 0, 0, 0, 2, 2],
[1, 0, 0, 0, 0, 2, 2],
[1, 2, 2, 2, 2, 2, 2],
[1, 2, 2, 2, 2, 2, 2]]) a = [1, 2, 3, 4, 5]
np.pad(a, (2, 3), 'constant', constant_values=(4, 6)) array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) # mode: 'edge': Pads with the edge values of array
np.pad(a, (2, 3), 'edge') array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) np.pad(a, (2, 3), 'linear_ramp', end_values=(5, 1)) array([5, 3, 1, 2, 3, 4, 5, 4, 2, 1]) np.pad(a, (2, 3), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5, 5]) np.pad(a, (2, 3), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3, 3]) np.pad(a, (2, 3), 'median') array([3, 3, 1, 2, 3, 4, 5, 3, 3, 3]) a = [[1, 2], [3, 4]]
np.pad(a, (2, 3), 'minimum') array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])
语法说明:
>>> help(np.pad)
Help on function pad in module numpy.lib.arraypad: pad(array, pad_width, mode, **kwargs)
Pads an array. Parameters
----------
array : array_like of rank N
Input array
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
for each axis.
((before, after),) yields same before and after pad for each axis.
(pad,) or int is a shortcut for before = after = pad width for all
axes.
mode : str or function
One of the following string values or a user supplied function. 'constant'
Pads with a constant value.
'edge'
Pads with the edge values of array.
'linear_ramp'
Pads with the linear ramp between end_value and the
array edge value.
'maximum'
Pads with the maximum value of all or part of the
vector along each axis.
'mean'
Pads with the mean value of all or part of the
vector along each axis.
'median'
Pads with the median value of all or part of the
vector along each axis.
'minimum'
Pads with the minimum value of all or part of the
vector along each axis.
'reflect'
Pads with the reflection of the vector mirrored on
the first and last values of the vector along each
axis.
'symmetric'
Pads with the reflection of the vector mirrored
along the edge of the array.
'wrap'
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
values at edge of each axis used to calculate the statistic value. ((before_1, after_1), ... (before_N, after_N)) unique statistic
lengths for each axis. ((before, after),) yields same before and after statistic lengths
for each axis. (stat_length,) or int is a shortcut for before = after = statistic
length for all axes. Default is ``None``, to use the entire axis.
constant_values : sequence or int, optional
Used in 'constant'. The values to set the padded values for each
axis. ((before_1, after_1), ... (before_N, after_N)) unique pad constants
for each axis. ((before, after),) yields same before and after constants for each
axis. (constant,) or int is a shortcut for before = after = constant for
all axes. Default is 0.
end_values : sequence or int, optional
Used in 'linear_ramp'. The values used for the ending value of the
linear_ramp and that will form the edge of the padded array. ((before_1, after_1), ... (before_N, after_N)) unique end values
for each axis. ((before, after),) yields same before and after end values for each
axis. (constant,) or int is a shortcut for before = after = end value for
all axes. Default is 0.
reflect_type : {'even', 'odd'}, optional
Used in 'reflect', and 'symmetric'. The 'even' style is the
default with an unaltered reflection around the edge value. For
the 'odd' style, the extended part of the array is created by
subtracting the reflected values from two times the edge value. Returns
-------
pad : ndarray
Padded array of rank equal to `array` with shape increased
according to `pad_width`. Notes
-----
.. versionadded:: 1.7.0 For an array with rank greater than 1, some of the padding of later
axes is calculated from padding of previous axes. This is easiest to
think about with a rank 2 array where the corners of the padded array
are calculated by using padded values from the first axis. The padding function, if used, should return a rank 1 array equal in
length to the vector argument with padded values replaced. It has the
following signature:: padding_func(vector, iaxis_pad_width, iaxis, kwargs) where vector : ndarray
A rank 1 array already padded with zeros. Padded values are
vector[:pad_tuple[0]] and vector[-pad_tuple[1]:].
iaxis_pad_width : tuple
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
values padded at the beginning of vector where
iaxis_pad_width[1] represents the number of values padded at
the end of vector.
iaxis : int
The axis currently being calculated.
kwargs : dict
Any keyword arguments the function requires. Examples
--------
>>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6]) >>> np.pad(a, (2, 3), 'edge')
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5]) >>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) >>> np.pad(a, (2,), 'maximum')
array([5, 5, 1, 2, 3, 4, 5, 5, 5]) >>> np.pad(a, (2,), 'mean')
array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> np.pad(a, (2,), 'median')
array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> a = [[1, 2], [3, 4]]
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
array([[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]]) >>> a = [1, 2, 3, 4, 5]
>>> np.pad(a, (2, 3), 'reflect')
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) >>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) >>> np.pad(a, (2, 3), 'symmetric')
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) >>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) >>> np.pad(a, (2, 3), 'wrap')
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) >>> def pad_with(vector, pad_width, iaxis, kwargs):
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> a = np.arange(6)
>>> a = a.reshape((2, 3))
>>> np.pad(a, 2, pad_with)
array([[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])
>>> np.pad(a, 2, pad_with, padder=100)
array([[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])
【400】numpy.pad 为数组加垫(迷宫类题目)的更多相关文章
- 《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算
http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说, ...
- 利用Python进行数据分析——Numpy基础:数组和矢量计算
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写 ...
- 图文并茂的Python教程-numpy.pad
图文并茂的Python教程-numpy.pad np.pad()常用与深度学习中的数据预处理,可以将numpy数组按指定的方法填充成指定的形状. 声明: 需要读者了解一点numpy数组的知识np.pa ...
- 《利用Python进行数据分析·第2版》第四章 Numpy基础:数组和矢量计算
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对 ...
- Numpy怎样将数组读写到文件
Numpy怎样将数组读写到文件 本文档介绍的是Numpy以自己内建二进制的方式,将数组写出到文件,以及从文件加载数组: 如果是文本.表格类数据,一般使用pandas这个类库做加载和处理,不用numpy ...
- Numpy 多维数组简介
 NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.NumPy这个词来源于两个单词-- Numerical和Python.NumPy提供了大量的库函数和操作,可以帮助程序员轻松地 ...
- numpy中 array数组的shape属性
numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属 ...
- Python之NumPy实践之数组和矢量计算
Python之NumPy实践之数组和矢量计算 1. NumPy(Numerical Python)是高性能科学技术和数据分析的基础包. 2. NumPy的ndarray:一种对位数组对象.NumPy最 ...
- 超级简单的数组加单链表实现Map
/** * 超级简单的数组加单链表实现Map * @author jlj * */ public class MyHashMap { public MyList[] lists; public int ...
随机推荐
- Yii2 设计模式——设计模式简介
我们首先来思考一个问题:作为工程师,我们的价值是什么? 笔者认为是——解决用户问题. 我们的任何知识和技能,如果不能解决特定的问题,那么就是无用的屠龙之术:我们的任何经验,如果不能对解决新的问题有用, ...
- Java泛型相关总结(下)
约束与局限性 不能用基本类型实例化类型参数 不能像Pair<double>这样调用,只能Pair<Double>,原因是类型擦除 运行时类型查询只使用于原始类型 虚拟机中的对象 ...
- volatile和不加volatile的区别
http://blog.chinaunix.net/uid-25100840-id-3067899.html 对于一个地址,如果加上了volatile参数,这个地址也就不会经过编译器优化,也就是说这个 ...
- 多态,封装,反射,类内置attr属性,os操作复习
1.多态 #多态 多态是指对象如何通过他们共同的属性和动作来操作及访问,而不需要考虑他们具体的类 运行时候,多种实现 反应运行时候状态 class H2O: def __init__(self,nam ...
- oracle死锁的处理办法
摘自:https://www.cnblogs.com/xuke/p/4053396.html http://blog.itpub.net/30036720/viewspace-2121034/ ora ...
- LAB1 partII
PartII 实现单词统计 实现 main/wc.go 两个函数 mapF() . reduceF() 单词是任意字母连续序列, 由unicode.IsLetter 决定字母 测试数据 pg-*. ...
- Director.js
Director.js 源码 // // Generated on Tue Dec 16 2014 12:13:47 GMT+0100 (CET) by Charlie Robbins, Paolo ...
- python css选择器
css 选择器 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...
- 8、Zookeeper分布式锁
基础知识:http://www.cnblogs.com/LiZhiW/p/4931577.html 1 可重入读写锁示例代码如下(lock.acquire加几个,就必须使用几个lock.release ...
- Docker集中化web界面管理平台-Shipyard部署记录
Docker图形页面管理工具基本常用的有三种: DOCKER UI,Shipyard,Portainer.对比后发现,Shipyard最强大,其次是Portainer,最后是Docker ui.之前介 ...